
An Empirical Exploration of Hidden Markov Models:
From Spelling Recognition to Speech Recognition

Shieu-Hong Lin
Department of Mathematics and Computer Science

Biola University
13800 Biola Avenue

La Mirada, California 90639
shieu-hong.lin@biola.edu

Abstract

Hidden Markov models play a critical role in the mod-
elling and problem solving of important AI tasks such
as speech recognition and natural language process-
ing. However, the students often have difficulty in
understanding the essence and applications of Hidden
Markov models in the context of a cursory introductory
coverage of the subject. In this paper, we describe an
empirical approach to explore the subject of the Hid-
den Markov models. This approach focuses on a series
of incremental developments of Hidden Markov mod-
els for automatic spelling recognition. The process of
programming and experiments with these models culti-
vates the actual modelling and problem-solving capac-
ity, and guides the students to a better understanding of
the application of similar Hidden Markov models used
in speech recognition.

1 Introduction

The mathematical framework of the Hidden Markov models
(HMMs) along with the algorithms related to HMMs have
played a very important role in the successful development
of intelligent systems for a wide variety of AI tasks in speech
recognition (Jelinek 1998) (Russell & Norvig 2003) and
natural language processing (Charniak 1994) (Manning &
Schütze 1999). In AI courses, automatic speech recognition
is often cited as a challenging and yet well accomplished AI
task by using HMMs and probabilistic reasoning (Russell &
Norvig 2003). To illustrate the general mechanism of mod-
ern speech recognition systems, the mathematical definition
of HMMs is provided along with description of the develop-
ment of the underlying acoustic model as an HMM (Russell
& Norvig 2003). This approach only presents a somewhat
abstract theoretical framework of the use of HMMs, and the
students do not have a chance to be involved in the process
of modelling and problem solving using HMMs.

We believe that a well designed course project about
HMMs is needed to better motivate the students to learn
Copyright c⃝ 2014, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

HMMs and cultivate the modelling and problem solving
skills transferrable to other challenging AI tasks. The use
of course projects and its benefits have been well acknowl-
edged in the general context of education (Blumenfeld &
Soloway 1991) (Barron et al. 1998) and in teaching specific
AI subjects such as stochastic local search (Neller 2005) and
case-based reasoning (Bogaerts & Leake 2005).

The main challenge to this project-based empirical ap-
proach of teaching HMMs is how to tailor the project to re-
tain enough details and make it real and thought-provoking,
while in the meantime avoid too much excursion outside the
subject of HMMs. For example, an empirical exploration
of speech recognition using real-world acoustic data would
require significant excursion to bring to an in-depth under-
standing of at least (i) the processing of acoustic signals
into frames and the data format of these acoustic frames,
and (ii) the actual linguistic data for phone models and pro-
nunciation models of real words (Russell & Norvig 2003).
To enable real-time interactions between the students and
the systems they are building, it would also incur additional
overhead of hardware and software setups to collect and an-
alyze acoustic data. In this regard, speech recognition is not
the best choice to be the center of the hands-on project on
HMMs.

In this paper, we describe the framework of a hands-on
project using HMMs for automatic recognition of misspelled
words. There is no complication in explaining the concept
of spelling recognition, the acquiring of data, or the real-
time interaction between the students and the systems they
are building. Both automatic spelling recognition (Jurafsky
& Martin 2000) and automatic speech recognition (Jelinek
1998) can be viewed as tasks of decoding corrupted mes-
sages received from a noisy-channel (Mackay 2003), and the
HMMs used for spelling recognition in the project are struc-
turally parallel to those used in speech recognition. This
allows us to conveniently find analogy to explain the general
mechanism of modern speech recognition systems based on
the experiences with the spelling recognition systems the
students are building. The framework can be flexibly tai-
lored from a couple of lab and programming assignments
to an extensive semester project. The project website at
http://csci.biola.edu/HMM provides additional details.

2 Chat-Room Spelling Recognition

In the chat-room environment, the participants under their
pseudo names can communicate with one another by ex-
changing text entered from the keyboard. Because of cogni-
tive and typographic mistakes, character strings appearing in
the text inputs in the chat room may not be valid words in the
vocabulary, and we have to guess what the actual intended
words are. For example, when the string “iis” appears in the
text input from a participant, we have to figure out the most
likely words in the vocabulary such as “is” and “its” as the
source of the corrupted string. When we are familiar with
the patterns of corrupted words from a frequent participant,
we may well recognize the original message from the cor-
rupted text inputs. Even when the frequent participant p is
under the disguise of a new pseudo name, we may be able
to recognize this seemingly unknown person by analyzing
the sample text inputs and its consistency with the spelling
characteristics of the well known participant p.

To highlight the analogy to speech recognition, we inten-
tionally use the term spelling recognition instead of spelling
correction. We focus on spelling recognition for English
and assume the text inputs are case-insensitive. In section 3,
we describe very simple probabilistic models for character-
izing how chat-room participants may (erroneously or not)
enter words through the keyboard. Given (i) the probabilis-
tic models for text inputs through the keyboard and (ii) a
vocabulary set V of words in Σ∗ with respect to the English
alphabet Σ, we formulate the following spelling recognition
tasks in the context of the chat-room environment.

Single-word spelling recognition: Given a character string
x entered by a specific participant p, the task of single-word
spelling recognition is to determine the top k most likely
words in V that could be (erroneously) typed by the partic-
ipant p as the character string x, where k is either one or a
bigger integer.

Multi-word spelling recognition: Given a sequence of c
character strings X = ⟨x1, x2, . . . xc⟩ entered by a specific
participant p, the task of multi-word spelling recognition is
to determine the most likely sequence of c words that may
end in the sequence of character strings X when entered by
the participant p.

Participant identity recognition: Given a sequence f c char-
acter strings X = ⟨x1, x2, . . . xc⟩ entered by an unidentified
participant, the task of participant identity recognition is to
determine, among a set of well known participants, the most
likely participant that may generate the strings in X.

3 Modelling the Input Process of Words

To be able to conduct automatic spelling recognition, we
need to devise probabilistic models of how participants input
individual words through the keyboard. As the first step of

I Fh i s

0.29

0.57

0.14

0.11

0.23

0.46

0.2 0.2 0.2

0.53

0.27

0.8

Figure 1: The spelling model regarding the word “his” with
the parameters degsp = 2, prepeat = 0.2, and pmoveOn =
0.8

the project, we define a very simple parameterized spelling
model and a very simple parameterized keyboard model for
this purpose, from which we can construct HMMs used in
probabilistic reasoning for spelling recognition.

3.1 The Spelling Model

The main purpose of the spelling model is to model the pos-
sibilities of spelling mistakes such as repeating or skipping
characters when a participant enters a word as a sequence of
characters.

Probabilistic state-transition diagrams: For each distinct
participant p and a given word w, the spelling model em-
ploys a probabilistic state-transition diagram SPw

p defined
in the following to describe the possible transitions of cog-
nitive states and the associated probabilities when w is en-
tered as a sequence of characters by p. See the example in
Figure 1 and the definitions of the parameters involved later
in Section 3.1.

States and the order of states in the diagrams: For each
distinct participant p and a given word w, the states in SPw

p
are ordered and represented as nodes listed from left to right
in the diagram. The initial state I is the first state, which
models p’s cognitive state of acknowledging the beginning
of inputting w. Then one by one for each character c in the
word w, there is a corresponding character state in SPw

p ,
which models p’s cognitive state of commitment to typing
that particular character c. In the end, the final state F mod-
els p’s cognitive state of acknowledging the end of inputting
w. This gives us n+2 distinct states in total for a word w of
n characters.

State transitions and spelling mistakes: Possible state tran-
sitions are represented as arcs in the diagram as shown in
Figure 1. From the initial state I, it is possible to transition
into to any character state. From each character state, it is
possible to transition into either the same state again, or to
any later character state (i.e. character states to its right), or
to the final state. Each time the participant p goes through
the process of inputting the word w, a series of cognitive
state transitions occurs, starting from the initial state I and
ending in the final state F . If the word w is spelled out per-

A B C D
E

F

G

H
I

J
MNOPQR

S
T

U

V
W

X Y Z

L K

KB
1

D

Figure 2: The one-dimensional keyboard model KB1
D

fectly without mistake, it should start from the initial state,
go through the character states one by one in the order, and
end in the final state. However, spelling mistakes may oc-
cur and end in repetition and/or skipping of some character
states in the series of state transition.

Transition probabilities: In general, the probability of a
state transition from a state s to a state t can be any real
number in the range of [0, 1] and is associated with the arc
from s to t in the diagram. The only constraint is that the
sum of transition probabilities from a state s must be one for
every state s other than the final state.

Parameters for modelling cognitive mistakes: To ease the
initial programming tasks for the students, we allow the use
of three parameters degsp, prepeat, and pmoveOn to further
simplify the spelling model. The parameter degsp is the rate
of exponential degrading of probability with respect to the
number of character skipped. The participant may skip one
or more characters, but the probability of skipping d1 char-
acters is deg

−(d1−d2)
sp times the probability of skipping d2

characters. For each character state, prepeat is the probabil-
ity to transition into the same state again while pmoveOn is
the sum of probabilities to transition into any later character
state or to the final state (i.e. the states to its right). Obvi-
ously, the sum of pmoveOn and prepeat must be one.

Calculating the transition probabilities automatically:
Note that (i) the sum of transition probabilities from each
specific state (other than the final state) into new states must
equal pmoveOn and (ii) the relative scales of transition prob-
abilities from each specific state into new states are com-
pletely determined by degsp. This allows us to easily write
code to automatically calculate the probabilities of all possi-
ble transitions in the diagram SPw

p based on the parameters
degsp and pmoveOn.

3.2 The Keyboard Model

The main purpose of the keyboard model is to model the
probabilities of typographic mistakes of pressing a wrong
key different from the intended character targeted by the cur-
rent cognitive state.

Probabilistic parameters for typographic mistakes: To ease
the initial programming tasks for the students, we use three
probabilistic parameters phit, pmiss, and degkb to simplify
the keyboard model. The parameter phit is the probability

that the exact key for the intended character is pressed to
generate the character. The parameter pmiss is the proba-
bility that a wrong key is pressed. Obviously, the sum of
phit and Pmiss must equal one. The parameter degkb is the
rate of exponential degrading of probability with respect to
the distance between the key of the intended character and
the key wrongly pressed. The probability of hitting a wrong
key that is in a distance of d1 away from the intended key is
deg

−(d1−d2)
kb times the probability of hitting a wrong key that

is in a distance of d2 distance away from the intended key.
Two simple distance metrics KB1

D and KB2
D are considered

in the following.

One-dimensional keyboard distance metric KB1
D: Imagine

a special keyword in the shape of a circle as shown in Fig-
ure 2 with the keys for the twenty six English letters evenly
arranged on the keyboard in the alphabetical order. For ex-
ample, ‘A’ is immediately adjacent to ‘Z’ and ‘B’, ‘B’ is
immediately adjacent to ‘A’ and ‘C’,. . ., and ‘Z’ is immedi-
ately adjacent to ‘Y’ and ‘A’. The distance between two keys
is simply one plus the minimum number of keys separating
them. For example, the distance between ‘A’ and ‘B’ is one,
the distance between ‘A’ and ‘C’ is two,. . ., the distance be-
tween ‘A’ and ‘Y’ is two, and the distance between ‘A’ and
‘Z’ is one,

Two-dimensional keyboard distance metric KB2
D: For the

standard keyboard we use, the keys for the twenty six En-
glish letters are arranged in three rows. There are many pos-
sible metrics to measure the distance between keys. How-
ever, for simplicity KB2

D identifies the location of the jth
key on the ith row as (i, j), and uses the standard Euclidean
distance as the distance metric.

Calculating the probabilities of typographic mistakes: Note
that (i) for each specific character c the sum of probabilities
of pressing wrong keys must equal pmiss and (ii) the relative
scales of the probabilities of pressing these wrong keys are
completely determined by degkb and the selected keyboard
distance metric. This allows us to easily write code to auto-
matically calculate the probabilities of pressing wrong keys
given the intended key based on the parameters degkb, pmiss

and the selected keyboard distance metric.

3.3 The Language Model and Further Extensions

For simplicity, our basic framework implicitly uses the null
language model, which assumes that each word is equally
likely to be used regardless of the context and therefore sen-
tences of the same length are equally likely. It is possi-
ble to adopt a more sophisticated language model such as
the bigram language model (Charniak 1994) (Manning &
Schütze 1999). See section 4 about how this would allow
us to take advantage of the context of the observed strings
when conducting multi-word spelling recognition. Also see
section 5.2 for further extensions of the spelling model and
the keyboard model.

4 Using HMMS for Spelling Recognition

The spelling model for spelling recognition describes the dy-
namics of transitions in cognitive states. Although we can-
not directly observe the underlying cognitive state, we can
observe the character generated as a result from a cogni-
tive state of trying to press a particular key. And the key-
board model describes the probabilistic correlation between
the actual character generated and intended key to press. For
the spelling-recognition tasks in section 2, we have to rea-
son about the most likely words or persons based on a se-
quence of observable characters (as corrupted words) gen-
erated by a sequence of hidden underlying cognitive states.
In the following, we show how we can well accomplish the
tasks by using the hidden Markov models and applying the
well known forward-backward algorithm to calculate likeli-
hood (Manning & Schütze 1999) (Jurafsky & Martin 2000)
(Russell & Norvig 2003).

HMMS for Spelling Recognition: Mathematically, a hid-
den Markov model is a four tuple ⟨S,R,T,O⟩ where S is a
finite set of underlying states {s1, s2, . . . , sn}, R is a finite
set of observable results {r1, r2, . . . , rm}, T is a transition
probability matrix with the element Tij recording the prob-
ability of a state transition from the current state si to the
next state sj , and O is an observation-likelihood probabil-
ity matrix with the element Oij recording the probability
of observing the result rj when the underlying system state
is si. For our spelling recognition tasks, the combination
of the spelling model and the keyboard model together for
a particular chat-room participant p ends in a collection of
hidden Markov models: HMMw

p = ⟨S,R,T,O⟩ for each
word W in the vocabulary set V where (i) the state set S is
simply the set of states in the state transition diagram SPw

p
of the spelling model in section 3.1, (ii) the observable re-
sult set R is simply the English alphabet Σ, composed of all
the English letters, (iii) the transition probability matrix T is
determined by the transition probabilities in the state transi-
tion diagram SPw

p of the spelling model in section 3.1, and
(iv) the observation-likelihood probability matrix O is de-
termined by the probabilities of typographic mistakes of the
keyboard model in section 3.2.

Accomplishing the Spelling Recognition Tasks:
Given a hidden Markov model m of n states and a sequence
of results r observed, the well known forward-backward al-
gorithm can determine Pr(r|m), the probability of observ-
ing r in O(|r|n2) time while the Viterbi algorithm can deter-
mine the most likely underlying state sequence in O(|r|n2)
time (Manning & Schütze 1999) (Russell & Norvig 2003).
For spelling recognition, a sequence of results r simply
means a sequence of characters as a corrupted or uncor-
rupted word entered by a chat-room participant, and we
have to consider the collection of hidden Markov models
HMMw

p as the combination of the spelling model and the
keyboard model for each chat-room participant p and each
word w in the vocabulary set V . In the following, we show
how we can accomplish the spelling recognition tasks by ap-

plying the forward-backward algorithm and the Viterbi al-
gorithm to the hidden Markov models HMMw

p described
above.

Algorithm for single-word spelling recognition: Given
a specific chat-room participant p and an observed char-
acter string x, we apply the forward-backward algorithm
for each word w in the vocabulary set V to calculate
Pr(x|HMMw

p), the probability of seeing x when the par-
ticipant p actually intends to type the word w. The top k
most likely words for the character string x are simply those
words associated with the highest k probabilities we got.

Algorithm for multi-word spelling recognition: Given a
specific chat-room participant p and a sequence of c ob-
served character strings X = ⟨x1, x2, . . . , xc⟩, if the default
null language model is used, we simply apply single-word
spelling recognition to determine the single most likely word
wxi

p for each string xi in the sequence X and the most likely
sequence of words is simply Wp = ⟨wx1

p , wx2
p , . . . , wxc

p ⟩.
Instead, if the bigram language model is adopted for mod-
elling the likelihoods of sequences of words, we should for
each observed character strings keep the most likely k candi-
date words (for a small k) and apply the well known Viterbi
algorithm to pick the single most like sequence of words out
of the candidates.

Algorithm for participant identity recognition: Given a se-
quence of c observed character strings X = ⟨x1, x2, . . . , xc⟩
and a set of d well known participants P = {p1, p2, . . . , pd},
we can apply multi-word spelling recognition to determine
the most likely word sequence Wpi = ⟨wx1

pi
, wx2

pi
, . . . , wxc

pi
⟩

corresponding to each participant pi in P. In the
meantime, for each participant pi, we can calculate∏

x∈X Pr(x|HMM
wx

pi
pi), the probability of seeing the se-

quence of character strings X entered by p when the word se-
quence Wp is actually intended by p. As a heuristic, the par-
ticipant p with the highest such probability value is picked as
the most like participant to generate the sequence of strings
X.

5 Framework of Empirical Exploration

We implement a simulated interactive chat-room environ-
ment for spelling recognition as the foundation for further
empirical exploration. Through a series of hands-on lab ex-
periments and programming assignments on top of the simu-
lated environment, the students are guided to develop a solid
understanding of the essence and applications of HMMs.

5.1 Simulating the Chat-Room Environment

We implement the key constructs such as the chat room, the
participants, the spelling model, and the keyboard model as
classes. Objects of these classes are then initiated to sim-

ulate the chat-room environment. The implementation can
be done in object-oriented programming languages such as
Java and C++.

The chatroom class: This class provides the simulation of
the chat-room environment. Each chatroom object contains
a dynamic array of participant objects and a collection of
words as the vocabulary set, and provides methods for the
outside world to interact with the participants.

The Participant class: Objects of this class simulate the be-
haviors of chat-room participants. Each participant object
contains a keyboardModel object and a spellingModel object
in it, and provides methods to (i) simulate the series of char-
acters that may actually appear as the result of trying to enter
a given word, (ii) explain the cognitive and typographic mis-
takes that end in the series of characters that appear as the
result of trying to enter a given word.

The KeyboardModel class: This is an abstract class with
two subclasses keyboard1D and keyboard2D to simulate the
behavior of typing using the keyboard distance metrics KB1

D

and KB2
D respectively regarding the keyboard model de-

scribed in section 3.2. An object of this class is initialized
with the probabilistic parameters for typographic mistakes
phit, pmiss, and degkb as its attributes, and provides meth-
ods to (i) simulate what the actual character may be seen as
the result of the chat-room participant trying to press a given
target key on the keyboard and (ii) calculate the probability
of seeing a character c when the participant intends to press
a given target key based on the probabilistic parameters phit,
pmiss, and degkb.

The SpellingModel class: This class provides the simula-
tion of flow of cognitive states (as described in section 3.1
regarding the spelling model) when the chat-room partici-
pant tries to enter a word as a series of characters. An object
of this class is initialized with the probabilistic parameters
for cognitive mistakes degsp, prepeat, and pmoveOn as its at-
tributes, and provides methods to (i) simulate what may be
the next cognitive state of the chat-room participant given
the current cognitive state in the process of entering a given
word and (ii) calculate the probability of a state transition
from one cognitive state to another based on the probabilis-
tic parameters degsp, prepeat, and pmoveOn.

The SpellingRecogHMMs class:
Each SpellingRecogHMMs object contains a keyboardModel
object and a spellingModel object and serves as an abstract
representation of the HMMs for speech recognition concern-
ing the keyboardModel object and the spellingModel object.
It also provides a method that can (by applying the forward-
backward algorithm to the underlying HMM HMMw

p) de-
termine Pr(x|HMMw

p), the probability of seeing x when a
participant p with the corresponding keyboardModel object
and spellingModel intends to type the word w.

5.2 Experiments and Programming Assignments

We use the simulated chat-room environment as the test
ground for the students to conduct experiments to get famil-
iar with the spelling-recognition domain, to implement their
own code to accomplish automatic spelling recognition, to
debug the code, and to evaluate the accuracy of spelling
recognition achieved.

Initiate the chat-room environment: We create a chat room
with two participants with quite different typing behaviors.
The participants use different values for the parameters in
the spelling model and the keyboard model. One of the
participants uses the one-dimensional keyboard model while
the other uses the two-dimensional keyboard model.

Interact with the chat-room participants: We give the stu-
dents a limited number of words and the students need to ask
each chat-room participant to (i) type each of these words
several times and (ii) explain the underlying cognitive and
typographic mistakes. The purpose of this experiment is to
have students directly observe the correlation of between (i)
the different models and the parameter values used by the
participants and (ii) the ways text inputs are corrupted by
the participants.

Conduct spelling recognition of words manually: For each
chat-room participant, we provide a small sample text and
ask the participant to enter the text. We then collect the re-
sults as corrupted texts, label the corrupted texts with the
names of the corresponding participants, and ask the stu-
dents to manually recover the original text messages. In the
end, the students compare what they have recovered to the
original texts and evaluate the accuracy they achieve.

Conduct participant identity recognition manually: In this
experiment, we collect corrupted texts generated by the par-
ticipants just like in the previous experiment, but we do not
label them with names of the corresponding participants.
The students have to first try to recognize the participant be-
hind each corrupted text. The actual participants behind the
corrupted texts are then revealed to the students to evaluate
the accuracy they achieve

Implement automatic spelling recognition: After the exper-
iments above, the students are already familiar with spelling
recognition domain. We then ask the students to implement
the spelling-recognition algorithms described in section 4.2
on top of the implementation of the SpellingRecogHMMs
class.

Conduct automatic spelling recognition: At this point,
the students can conduct automatic spelling recognition of
words and participant identity recognition by applying their
code to corrupted texts they have played with in the ear-
lier experiments. The students can compare the accuracy
achieved by their code with that achieved by people to see
the power of automatic spelling recognition using HMMs.

Further extensions of the framework: The simple spelling
model and the simple keyboard in section 3.2 can be en-
hanced to extensively cover cognitive mistakes such as trans-
posing the order of two adjacent characters in the word (Ju-
rafsky & Martin 2000) and the general edit operations de-
scribed in (Brill & Moore 2000). Another useful extension
of the basic framework is to learn the state-transition prob-
abilities and the observation-likelihood probabilities of the
underlying HMMS directly from the corpus of spelling er-
rors (Manning & Schütze 1999) (Brill & Moore 2000), in-
stead of parameterizing the spelling model and the keyboard
and setting the parameter values manually. These extensions
can easily end in a semester project for advanced students
to substantially expand their implementation of the basic
framework to (i) incorporate the bigram language model as
described in section 3.3, (ii) refine the spelling model, and
(iii) to learn probabilities from the spelling-error corpus.

6 From Spelling Recognition to Speech
Recognition

The following is a brief highlight of the analogy between
(i) the roles of spelling model, the keyboard model, the
language model, and the HMMs used in spelling recog-
nition and (ii) the roles of the pronunciation model, the
phone model, the language model, and the HMMs used in
speech recognition (Jurafsky & Martin 2000) (Russell &
Norvig 2003). First of all, note the similarity between the
process of typing words and the process of pronouncing
words. The chat-room participant enters a word by transi-
tions through a series of cognitive states of typing individual
characters. For speech recognition the speaker pronounces a
word by transitions through a series of cognitive states to
pronounce phones. As an analogy to the spelling model
in spelling recognition, the pronunciation model is used in
speech recognition to model for each word the dynamics
of possible transitions of the speaker’s cognitive states un-
derlying the phones to pronounce. The keyboard model
in spelling recognition models the likelihoods of possible
characters being observed as the result of the participant in-
tending to press a specific key. As an analogy, the phone
model in speech recognition models the likelihoods of var-
ious possible acoustic patterns being observed as the result
of the speaker intending to pronounce a specific phone. In
both spelling recognition and speech recognition, exactly the
same kind of models such as the bigram model can be used
as the language model to better differentiate the likelihoods
of words given different context of neighboring words. Par-
allel to how HMMs are derived from the spelling model
and the keyboard model for spelling recognition, HMMs
are derived from the pronunciation model and the phone
model. In both spelling recognition and speech recognition,
the forward-backward algorithm and the Viterbi algorithm
are then applied to these HMMs to recover the most likely
individual words and/or word sequences.

Because of the analogy between spelling recognition and

speech recognition, students can naturally transfer what
they have learned from the empirical exploration of spelling
recognition to facilitate a concrete understanding of the ap-
plication of HMMs in modern speech recognition systems.

7 Conclusion

Hidden Markov models play a critical role in the modelling
and problem solving of important AI tasks such as speech
recognition and natural language processing. However, a
cursory theoretical coverage of the subject can rarely es-
tablish a concrete understanding of the essence and appli-
cations of Hidden Markov models. In this paper, we de-
scribe an empirical approach to explore the subject of the
Hidden Markov models. This approach analyzes the text-
input process and develops Hidden Markov models for auto-
matic spelling recognition. Through a series of incremental
programming and experimental assignments, we can culti-
vate the actual modelling and problem-solving capacity of
the students, and guides the students to an in-depth under-
standing of the application of similar Hidden Markov mod-
els used in speech recognition.

References

Barron, B. J.; Schwartz, D. L.; Vye, N. J.; Moore, A.;
Pertrosino, A.; Zech, L.; and Bransford, J. 1998. Doing
with understanding: lessons from research on problem- and
project-based learning. Journal of the Learning Sciences
7:271–311.
Blumenfeld, P. C., and Soloway, E. 1991. Motivating
project-based learning: sustaining the doing, supporting
the learning. Educational Psychologist 26:369–398.
Bogaerts, S., and Leake, D. 2005. Increasing ai project
effectiveness with reusable code framework: a case study
using iucbrf. In Proc. of FLAIRS-2005. AAAI Press.
Brill, E., and Moore, R. C. 2000. An improved error model
for noisy channel spelling correction. In Proc. of the 38th
Annual Meeting of the ACL, pages 286–293.
Charniak, E. 1994. Statistical Language Learning. MIT
Press.
Jelinek, F. 1998. Statistical Methods for Speech Recogni-
tion. MIT Press.
Jurafsky, D., and Martin, J. H. 2000. Speech and Lnaguage
Processing. Prentice Hall.
Mackay, D. J. C. 2003. Information Theory, Inference, and
Learning Algorithms. Cambridge Universirt Press.
Manning, C. D., and Schütze, H. 1999. Foundations Of
Statistical Natural Language Processing. MIT Press.
Neller, T. W. 2005. Teaching stochastic local search. In
Proc. of the FLAIRS-2005. AAAI Press.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach,. Prentice Hall, 2nd edition.

