
Hidden Markov Models for Spelling Recognition

Shieu-Hong Lin
Department of Mathematics and Computer Science

Biola University
shieu-hong.lin@biola.edu

1 Introduction

The mathematical framework of the Hidden Markov models
(HMMs) along with the algorithms related to HMMs have
played a very important role in the successful development
of intelligent systems for a wide variety of AI tasks in speech
recognition (Jelinek 1998) (Russell & Norvig 2003) and
natural language processing (Charniak 1994) (Manning &
Schütze 1999). In AI courses, automatic speech recognition
is often cited as a challenging and yet well accomplished AI
task by using HMMs and probabilistic reasoning (Russell &
Norvig 2003). To illustrate the general mechanism of mod-
ern speech recognition systems, the mathematical definition
of HMMs is provided along with description of the develop-
ment of the underlying acoustic model as an HMM (Russell
& Norvig 2003). This approach only presents a somewhat
abstract theoretical framework of the use of HMMs, and the
students do not have a chance to be involved in the process
of modelling and problem solving using HMMs.

In this handout, we describe the use of Hidden Markov
models for automatic spelling recognition. Through a pro-
cess of programming and experiments along with these
models, the students can cultivate the understanding of
HMMs in a simple context of spelling recognition. Both
automatic spelling recognition (Jurafsky & Martin 2000)
and automatic speech recognition (Jelinek 1998) can be
viewed as tasks of decoding corrupted messages received
from a noisy-channel (Mackay 2003), and the HMMs used
for spelling recognition in the project are structurally paral-
lel to those used in speech recognition. This allows us to
conveniently find analogy to explain the general mechanism
of modern speech recognition systems based on the experi-
ences with the spelling recognition systems the students are
building.

2 Spelling-Recognition Tasks in a Chat-Room

In the chat-room environment, the participants under their
pseudo names can communicate with one another by ex-
changing text entered from the keyboard. Because of cogni-
tive and typographic mistakes, character strings appearing in

the text inputs in the chat room may not be valid words in the
vocabulary, and we have to guess what the actual intended
words are. For example, when the string “iis” appears in the
text input from a participant, we have to figure out the most
likely words in the vocabulary such as “is” and “its” as the
source of the corrupted string. When we are familiar with
the patterns of corrupted words from a frequent participant,
we may well recognize the original message from the cor-
rupted text inputs. Even when the frequent participant p is
under the disguise of a new pseudo name, we may be able
to recognize this seemingly unknown person by analyzing
the sample text inputs and its consistency with the spelling
characteristics of the well known participant p.

To highlight the analogy to speech recognition, we inten-
tionally use the term spelling recognition instead of spelling
correction. We focus on spelling recognition for English
and assume the text inputs are case-insensitive. In section 3,
we describe very simple probabilistic models for character-
izing how chat-room participants may (erroneously or not)
enter words through the keyboard. Given (i) the probabilis-
tic models for text inputs through the keyboard and (ii) a
vocabulary set V of words in Σ∗ with respect to the English
alphabet Σ, we formulate the following spelling recognition
tasks in the context of the chat-room environment.

Single-word spelling recognition: Given a character string
x entered by a specific participant p, the task of single-word
spelling recognition is to determine the top k most likely
words in V that could be (erroneously) typed by the partic-
ipant p as the character string x, where k is either one or a
bigger integer.

Multi-word spelling recognition: Given a sequence of c
character strings X = ⟨x1, x2, . . . xc⟩ entered by a specific
participant p, the task of multi-word spelling recognition is
to determine the most likely sequence of c words that may
end in the sequence of character strings X when entered by
the participant p.

Participant identity recognition: Given a sequence f c char-
acter strings X = ⟨x1, x2, . . . xc⟩ entered by an unidentified
participant, the task of participant identity recognition is to
determine, among a set of well known participants, the most



I Fh i s

0.29

0.57

0.14

0.11

0.23

0.46

0.2 0.2 0.2

0.53

0.27

0.8

Figure 1: The spelling model regarding the word “his” with
the parameters degsp = 2, prepeat = 0.2, and pmoveOn =
0.8

likely participant that may generate the strings in X.

3 Modelling the Input Process of Words

To be able to conduct automatic spelling recognition, we
need to devise probabilistic models of how participants input
individual words through the keyboard. As the first step of
the project, we define a very simple parameterized spelling
model and a very simple parameterized keyboard model in
the following for this purpose, from which we can construct
HMMs used in probabilistic reasoning for spelling recogni-
tion.

3.1 The Spelling Model

The main purpose of the spelling model is to model the pos-
sibilities of spelling mistakes such as repeating or skipping
characters when a participant enters a word as a sequence of
characters.

Probabilistic state-transition diagrams: For each distinct
participant p and a given word w, the spelling model em-
ploys a probabilistic state-transition diagram SPw

p defined
in the following to describe the possible transitions of cog-
nitive states and the associated probabilities when w is en-
tered as a sequence of characters by p. See the example in
Figure 1 and the definitions of the parameters involved later
in Section 3.1.

States and the order of states in the diagrams: For each
distinct participant p and a given word w, the states in SPw

p
are ordered and represented as nodes listed from left to right
in the diagram. The initial state I is the first state, which
models p’s cognitive state of acknowledging the beginning
of inputting w. Then one by one for each character c in the
word w, there is a corresponding character state in SPw

p ,
which models p’s cognitive state of commitment to typing
that particular character c. In the end, the final state F mod-
els p’s cognitive state of acknowledging the end of inputting
w. This gives us n+2 distinct states in total for a word w of
n characters.

State transitions and spelling mistakes: Possible state tran-
sitions are represented as arcs in the diagram as shown in
Figure 1. From the initial state I, it is possible to transition
into to any character state. From each character state, it is
possible to transition into either the same state again, or to
any later character state (i.e. character states to its right), or
to the final state. Each time the participant p goes through
the process of inputting the word w, a series of cognitive
state transitions occurs, starting from the initial state I and
ending in the final state F . If the word w is spelled out per-
fectly without mistake, it should start from the initial state,
go through the character states one by one in the order, and
end in the final state. However, spelling mistakes may oc-
cur and end in repetition and/or skipping of some character
states in the series of state transition.

Transition probabilities: In general, the probability of a
state transition from a state s to a state t can be any real
number in the range of [0, 1] and is associated with the arc
from s to t in the diagram. The only constraint is that the
sum of transition probabilities from a state s must be one for
every state s other than the final state.

Parameters for modelling cognitive mistakes: To ease the
initial programming tasks for the students, we allow the use
of three parameters degsp, prepeat, and pmoveOn to further
simplify the spelling model.

• prepeat: In every character state, prepeat is the probability
of transition into the same state again.

• pmoveOn: In every character state, pmoveOn is the sum of
probabilities of transition into any later character state or
to the final state (i.e. the states to its right). Obviously, the
sum of pmoveOn and prepeat must be one.

• degsp: the parameter degsp is the rate of exponential de-
grading of probability with respect to the number of char-
acter skipped. The probability of skipping d (for d > 0)
characters is proportional to deg−d

sp . In other words, the
probability of skipping d (for d > 0) characters is sim-
ply some constant times deg−d

sp . This setting ensures that

the probability of skipping d1 characters is deg
−(d1−d2)
sp

times the probability of skipping d2 characters.

Calculating the transition probabilities automatically:
Note that (i) the sum of transition probabilities from each
specific state (other than the final state) into new states must
equal pmoveOn and (ii) the relative scales of transition prob-
abilities from each specific state into new states are com-
pletely determined by deg−d

sp , depending on the skipping dis-
tance d. This allows us to easily write code to automatically
calculate the probabilities of all possible transitions in the
diagram SPw

p based on the parameters degsp and pmoveOn.



A B C D
E

F

G

H
I

J
MNOPQR

S
T

U

V
W

X Y Z

L K

KB
1

D

Figure 2: The one-dimensional keyboard model KB1
D

3.2 The Keyboard Model

The main purpose of the keyboard model is to model the
probabilities of typographic mistakes of pressing a wrong
key different from the intended character targeted by the
current cognitive state.

Probabilistic parameters for typographic mistakes: To ease
the initial programming tasks for the students, we use three
probabilistic parameters phit, pmiss, and degkb to simplify
the keyboard model.

• phit: the parameter phit is the probability that the exact
key for the intended character is pressed to generate the
character.

• pmiss: the parameter pmiss is the probability that a wrong
key is pressed. Obviously, the sum of phit and pmiss must
equal one.

• degkb: The parameter degkb is the rate of exponential
degrading of probability with respect to the distance be-
tween the key of the intended character and the key
wrongly pressed. The probability of pressing a wrong key
a distance of d (for d > 0) away is proportional to deg−d

kb .
In other words, the probability of of pressing a wrong key
a distance of d (for d > 0) away is simply some constant
times deg−d

sp . This setting ensures that the probability of
hitting a wrong key that is in a distance of d1 away from
the intended key is deg

−(d1−d2)
kb times the probability of

hitting a wrong key that is in a distance of d2 distance
away from the intended key.

A simple distance metrics KB1
D is considered in the fol-

lowing.

One-dimensional keyboard distance metric KB1
D: Imagine

a special keyword in the shape of a circle as shown in Fig-
ure 2 with the keys for the twenty six English letters evenly
arranged on the keyboard in the alphabetical order. For ex-
ample, ‘A’ is immediately adjacent to ‘Z’ and ‘B’, ‘B’ is
immediately adjacent to ‘A’ and ‘C’,. . ., and ‘Z’ is immedi-
ately adjacent to ‘Y’ and ‘A’. The distance between two keys
is simply one plus the minimum number of keys separating
them. For example, the distance between ‘A’ and ‘B’ is one,
the distance between ‘A’ and ‘C’ is two,. . ., the distance be-
tween ‘A’ and ‘Y’ is two, and the distance between ‘A’ and
‘Z’ is one,

Calculating the probabilities of typographic mistakes: Note
that (i) for each specific character c the sum of probabilities
of pressing wrong keys must equal pmiss and (ii) the relative
scales of the probabilities of pressing these wrong keys are
completely determined by deg−d

kb where d is the distance be-
tween the wrong key and the intended key. This allows us to
easily write code to automatically calculate the probabilities
of pressing wrong keys given the intended key based on the
parameters degkb, pmiss and the selected keyboard distance
metric.

A simplified example: Consider the situation that pmiss =
0.1, phit = 0.9, and degkb = 2. If the one-dimensional
keyboard only has 4 keys a, b, c, d (instead of the full 26
keys), the probabilities of typographic mistakes when trying
to type a are

• Pr(Char = b|State = a) = 0.04,
• Pr(Char = c|State = a) = 0.02, and
• Pr(Char = d|State = a) = 0.04.

3.3 The Language Model and Further Extensions

For simplicity, our basic framework implicitly uses the null
language model, which assumes that each word is equally
likely to be used regardless of the context and therefore sen-
tences of the same length are equally likely. It is possi-
ble to adopt a more sophisticated language model such as
the bigram language model (Charniak 1994) (Manning &
Schütze 1999). See section 4 about how this would allow
us to take advantage of the context of the observed strings
when conducting multi-word spelling recognition. Also see
section 5.2 for further extensions of the spelling model and
the keyboard model.

References

Charniak, E. 1994. Statistical Language Learning. MIT
Press.
Jelinek, F. 1998. Statistical Methods for Speech Recogni-
tion. MIT Press.
Jurafsky, D., and Martin, J. H. 2000. Speech and Lnaguage
Processing. Prentice Hall.
Mackay, D. J. C. 2003. Information Theory, Inference, and
Learning Algorithms. Cambridge Universirt Press.
Manning, C. D., and Schütze, H. 1999. Foundations Of
Statistical Natural Language Processing. MIT Press.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach,. Prentice Hall, 2nd edition.


