Binary Conversion

Decimal to Binary

1. Write out your decimal number
2. Divide it by 2 . Write the quotient below it and the remainder in a column to the right.
3. Repeat step 2 until when you get 0 for your quotient.
4. Now start at the bottom of your list of remainders and build your binary number from left to right.
5. Remark on leading zero's: You can always add any number of leading zeros to the left hand side of your binary number to make it a binary string of more bits without affecting the actual number it represents. For example, 1101001, 01101001, 001101001, $0001101001, \ldots$ are the binary representation of the decimal number 105 in 7 bits, 8 bits, 9 bits, 10 bits, \ldots.

Example: Convert the decimal number 105 into the binary number 01101001 as a binary string of 8 bits

	Remainders
105	
52	1
26	0
13	0
6	1
3	0
1	1
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$

Answer is: $\quad 105$ base $\mathbf{1 0}=01101001$ base 2

Binary to Decimal

1. Write out your binary number.
2. Below it write out the set position weights.
3. For each ' 1 ' in the binary number, write down the associated position weight.
4. Add up the position weights written down in step 3 to get the decimal number.

Binary	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	
Position	7	6	5	4	3	2	1	0	

| Weight | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Add 'em | | $\mathbf{6 4}$ | $\mathbf{3 2}$ | | $\mathbf{8}$ | | | $\mathbf{1}$ | $=\mathbf{1 0 5}$ |

What is the largest natural number you can represent using \boldsymbol{n} bits?

- Base 2: $111 \ldots 11_{\text {base } 2}$
- Base 10: $2^{\mathrm{n}-1}+2^{\mathrm{n}-2}+\ldots+2^{1}+2^{0}{ }_{\text {base } 10}=2^{\mathrm{n}}-1$

Addition:

- Base 10:

$$
\begin{gathered}
7 \\
+\quad 6 \\
======= \\
13
\end{gathered}
$$

- Base 2:

	111
+	110
$=======$	
	1101

- Note that

1. $\mathbf{7 b a s e ~} 10=1111_{\text {base } 2}$
2. $\mathbf{6}_{\text {base } 10}=110$ base 2
3. $\mathbf{1 3}$ base $10=1101_{\text {base } 2}$
