Binary Conversion

Decimal to Binary

- 1. Write out your decimal number
- 2. Divide it by 2. Write the quotient below it and the remainder in a column to the right.
- 3. Repeat step 2 until when you get 0 for your quotient.
- 4. Now start at the *bottom* of your list of remainders and build your binary number from *left to right*.
- 5. Remark on leading zero's: You can always add any number of leading zeros to the left hand side of your binary number to make it a binary string of more bits without affecting the actual number it represents. For example, 1101001, 01101001, 001101001, 0001101001, ... are the binary representation of the decimal number 105 in 7 bits, 8 bits, 9 bits, 10 bits,

Example: Convert the decimal number **105** into the binary number **01101001** as a binary string of 8 bits

	Remainders
105	
52	1
26	0
13	0
6	1
3	0
1	1
0	1
0	0

Answer is: $105_{base 10} = 01101001_{base 2}$

Binary to Decimal

- 1. Write out your binary number.
- 2. Below it write out the set position weights.
- 3. For each '1' in the binary number, write down the associated position weight.
- 4. Add up the position weights written down in step 3 to get the decimal number.

Binary	0	1	1	0	1	0	0	1	
Position	7	6	5	4	3	2	1	0	

Weight	128	64	32	16	8	4	2	1	
Add 'em		64	32		8			1	= 105

What is the largest natural number you can represent using *n* bits?

• Base 2: $111 \dots 11_{base 2}$ • Base 10: $2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0_{base 10} = 2^n - 1$

Addition:

• **Base 10:**

		+	7 6
	D	====	13
•	Base 2:	+	111 110
		====	1101
•	Note that 1. 7 base 10	=	111 _b

1.	7 base 10	=	111 base 2
2.	6 base 10	=	110 base 2
3.	13 base 10	=	1101 base 2