

Introduction Computer Science

CSCI 105

SEMESTER (fall 2017)

PROFESSOR/CLASS INFORMATION

Dr. Shieu-Hong Lin
(Course) Title: Intro to Computer Science
Term: fall, 2017
Location: LIB 141
Office Phone: 562 903-4741
Office Hours: See the info announced at
 http://csci.biola.edu/csci105Lin/
E-Mail: Contact instructors through Canvas
Dept. Website: http://csci.biola.edu

Course Code/#: CSCI 105
Class Days/Time: MW 10:30-11:45am Section 1
Class Days/Time: MW 1:30-2:45pm Section 2
Credit Hours/Units: 3
Office Location: Grove 8
Meeting with Professor: Make Appt via Email
Admin Assistant: Jerrianne Smith, x4741

COURSE DESCRIPTION

Introduction to computer hardware and software. Problem solving methods. Elementary concepts of
algorithm development. C++ programming. Offered every year

COURSE OBJECTIVES AND STUDENT LEARNING OUTCOMES

By the completion of this course including class participation, class assignments (referred to as "Tasks"),
class readings and group interaction, the following objectives and learning outcomes will be assessed
and demonstrated:

IDEA Objective #4: Developing specific skills, competencies, and points of view needed by professionals
in the field most closely related to this course (Essential emphasis).

STUDENT LEARNING OUTCOMES (The learner will demonstrate that he or she has satisfactorily fulfilled
IDEA Objective #4 by being able to):

 Able to use the Microsoft Visual C++ programming environment to develop C++ programs composed
of multiple functions in multiple files.

 Able to fluently write C++ programs for problem solving using basic C++ language features such as
built-in data types, variable declaration, arithmetic operators, conditional statements, loops,
functions, arrays, structures, and classes.

 Gain a solid understanding of fundamental concepts of computing, such as programming,

programming languages, compilers, execution of programs, algorithms, and the binary system.
 Develop a perspective of faith and learning in computer science through reflection assignments on

the essence of computation and the wide spectrum of applications in important and interesting
areas.

REQUIRED TEXTS

 Tony Gaddis, Starting Out With C++ From Control Structures through Objects, 8th Ed., 2014.

LEARNING TASKS (Assignments) & ASSESSMENT (Grading)

Description and Weighting of Assignments:

Task 1: Weekly Reading and Progress Report (15 assignments)
Weighting: 10%
Possible Points: 4 points each.
Description: The student needs to report the following information:

Effort (2 points):
Report the (i) a numerical estimate of the amount of time he/she spent for the reading, (ii) a
numerical percentage regarding the percentage of stuff in the reading actually read and
understood, and (iii) whether the student has come to the class this week.

Reflection on the reading (2 points):
The student need to put down 1 to 2 paragraphs of his/her thoughts about the reading such as
new insight you gained, interesting things encountered, questions of things you don’t
understand, and so forth.

Assessment:
For the effort part,
the student is expected to (i) have attended the class this week at least once (0.5 point), and (ii)
have either gained a good understanding of 80% or more of the contents or have spent at least
three hours in the reading (1.5 points).

For the reflection part,
the student is expected to show substantial evidence of understanding or effort of trying to
understand the contents in the reading.

Task 2: Weekly Programming Assignments (about 10 assignments)
Due Date: Mondays of the weeks
Weighting: 45%
Possible Points: 6 points each.
Description: There will be around 10 weekly programming assignments, which form the
backbone of the course. They require the student to incrementally develop programming skills
based on the concepts learned in the class. You need to submit a peer review report together
with all your source code files for each assignment as a zip file. In the self-evaluation report, you
should describe results from sufficient test cases that are verified by a peer reviewer.

Integrity rules for programming assignments:

 Peer discussion is encouraged: Peer discussion is encouraged to cultivate an open
learning environment in the class, but you should carefully read the guidelines below to
avoid any dishonest behavior and never step over the guidelines explicitly described in
the following.

 Never use code written by others: Any copy-and-paste of code from other people’s
programs or from websites is viewed as cheating and you will get 0 points for the
assignment.

 Never circulate your code to others: Peer discussion of code shown on the screen is
acceptable for debugging purpose and for explanation of ideas. But you should never
pass around your code (electronically or on paper) to others except for the TA and the
instructor. Violating this rule is viewed as cheating in the class and the provider will
receive 0 points for the assignment.

 Never provide false or exaggerated results of test cases: You need to describe results of
test cases in the self-evaluation report. Providing false or exaggerated results of test
cases in the report is viewed as cheating and you will receive 0 points for the
assignment.

 Demonstrate the credibility of your authorship of the work: When you submit your
code as your own work for points, you should make sure that you are able to explain
your code and reconstruct your code from scratch without any outside help when
requested. If you are not able to do that on your own when requested, you will get 0
points for the assignment and there will be an investigation.

 Consequence of cheating in the class: Cheatings end in 0 points for the assignments
followed by discipline actions described in the student handbook.

Assessment: The student needs to submit (all related .cpp and .h files) together with a

self-evaluation report. The self-evaluation report should describe results from sufficient

test cases that are verified by a peer reviewer. We’ll grade each programming assignment

in a 0-6 scale based on the following rubric.

0. Nothing done or missing the self-evaluation report or missing the integrity review in
the report.

1. Source code is completed but the code fails to compile successfully.
2. Source code can compile and do something required, but has serious bugs or miss a

couple of key features.
3. Source code can compile and do most of the features required, but has many minor

bugs or miss a key required feature.
4. Source code can compile and do all the features required, nearly fully functional, only a

couple of minor bugs.
5. Source code can compile and do all the features required, fully functional, no bugs.
6. In addition to the points received above, get one more point if

a. the self-evaluation report contains sufficient descriptions of test cases used (0.25 point), and
b. the self-evaluation report indicates the results of the test cases were verified by a peer
reviewer (0.25 point), and

c. the source code is well indented and commented to make it visually very readable (0.5
point).

Task 3: Exams (Written tests and programming tests)
Weighting: 40%
Description: The exams have both (i) the written component, which mainly tests the conceptual
understanding of data structures, and (ii) the programming component, which tests skills in
object-oriented programming.
Assessment: The written component will be graded based on the answers provided while the
programming component will be graded based on the same rubric provided for the weekly
programming assignments.

Task 4: Faith and Learning Reflection Reports (2 assignments)
Weighting: 5%
Description: There will be assignments on faith and learning and the students needed to submit
essays as they gain more exposure to programming and have the opportunities to reflect on
issues of faith and learning in computer science.

Assessment: The essays will be graded according to the rubrics given for each reflection
assignments.

CLASS INFORMATION

1. Class Attendance:

Attendance: You are expected to attend the class regularly since we will examine details of C++
programs using the computers in the lab. Missing the class can seriously hamper your
understanding of many key concepts and programming skills critically needed in your
programming assignments. Class attendance is counted toward points for the weekly reading
report.

2. Turning in Assignments:

Assignments are expected to be electronically submitted under the Canvas system. Due dates
are all on Wednesdays. The submission link under Canvas may remain open for 2 more days
after the due date as grace period.

3. Late Policy:

1 point will be deducted for late submission within 2 days of the due date while the submission
link is still open. You will receive no points after the submission on canvas is closed unless it is
something like a serious health issue with statements from the doctor as proof.

4. Computation of Final Grade:

Weekly Reading Report 10 %

Weekly Programming Assignments 45%

Exams 40 %

Faith and Learning Reflection 5%

Total 100%

5. Final grades will be awarded on the following point system:
A 93%
A- 90%
B+ 87%
B 84%
B- 80%
C+ 77%
C 74%
C- 70%
D+ 67%
D 64%
D- 60%

GENERAL INFORMATION

1. The GPA System used by the University Registrar’s Office is:

A = 4.0 B = 3.0 C = 2.0 D = 1.0

A- = 3.66 B- = 2.66 C- = 1.66 D- = 0.66

B+ = 3.33 C+ = 2.33 D+ = 1.33 F = 0.0

2. Method of Instruction:

The following methods of instruction will be included in this course:

1. Lecture
2. Written Reports
3. Programming Assignments
4. Labs
5. Reading

3. Posting of Grades:

Grades for individual assignments will be posted under Biola’s Canvas system. To access the
records online, log on to http://canvas.biola.edu/ to make sure the records are accurate.

Tentative Schedule

 Weeks 1-2 Introduction to programming in C++

 Weeks 3-4 Conditional statements

 Weeks 5-6 Loops

 Week 7 Review & Midterm

 Weeks 8-9 Functions

 Weeks 10-12 Arrays + Searching and sorting with arrays

 Weeks 13-14 Structures and pointers

 Week 15 Final

http://canvas.biola.edu/

