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Homework #3: Empirical Study on the Average Height of Binary Search Trees 

 

The height of the binary search tree: 

Given a binary search tree (referred to as BST in the following), let’s define the 

number of nodes on a longest path from the root to a node in the BST as the height of 

the BST. In the worst-case scenario, a BST of n nodes may essentially degenerate into 

a sorted linked list, ending in a BST of height n. However, on average the height of 

random BSTs of n nodes is O(log2 n), i.e. no more than some constant times log n 

when n is big. The maximal amount of time for search, deletion, and insertion in a 

BST of n nodes is proportional to the height of the BST. Thus the average time for 

search, deletion, and insertion in a BST of n nodes is of the order of O(log2 n). In this 

assignment, we would like to conduct experiments to see empirically how well the 

binary trees actually work on average. 

 

Requirements:  

 

Part I.  Coding the height-related method and testing it extensively:  

Based on the binary search tree class code and the C++ project you have for 

Homework#2, do the following implementation: 

 Method to recursively calculate the height of a given branch: Add a new 

private member function, int BranchHeight(TreeNode * ptrNode ), into the 

binary search tree class you have for the previous programming assignment. 

This method should return the height of a given branch within the binary 

search tree rooted at the node pointed to by ptrNode. To implement this 

method, you should check whether ptrNode is NULL or not. If it is NULL, it 

is an empty branch and you return 0 as the height. Otherwise, you recursively 

call BranchHeight(ptrNode->Left) and BranchHeight(ptrNode->Right) to 

determine the heights of the two immediately branches, and return one plus 

the larger one of the heights of the two branches. Make sure you just call 

BranchHeight(ptrNode-Left) and BranchHeight(ptrNode->Right) once 

respectively and store the results in two local variables for later use to 

determine the tree height. If you call BranchHeight(ptrNode-Left) and 

BranchHeight(ptrNode->Right) more than once, your program will perform 

very slowly in the experiments in Part 2. 
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 Method to calculate the height of a tree: Add a new public member function, 

int Height( ), to the binary search tree class calculate the current height of the 

tree. For any concrete binary search tree object myTree, a member function 

call myTree.Height( ) should return the current height of the tree. To 

implement this method, you can simply call BranchHeight(Root), where Root  

is simply private data member of myTree pointing to the root of the 

underlying binary search tree. 

 Note on the Clear method: This method delete all the tree nodes from the 

tree by calling DeleteCompleteTree(Root) recursively and set Root to nullptr. For 

any concrete binary search tree object myTree, a member function call 

myTree.Clear( ) will free all the tree nodes used in the tree and make it an 

empty tree. 

 User menu and options for testing tree height and clearing the tree in the 

main function: In the main function, declare a tree object myTree to store 

dates and then use a loop to repeated display a menu and prompt the user to 

choose one of the options: (i) an option T to enter a date and then insert it into 

the tree object myTree, (ii) an option to calculate and display the height of the 

tree object myTree by calling myTree.Height( ), and (iii) an option K to clear 

the tree to an empty tree. Your main function should serve the user according 

to the chosen option. 

 Extensive test to make sure the implementation is correct: You should then 

extensively test the Height method to make sure it works. For example, after 

clearing the tree and then manually inserting the following series of dates (1, 1, 

2006), (1, 2, 2006), (1, 3, 2006), (1, 4, 2006), (1, 5, 2006), (1, 6, 2006), (1, 7 

2006) one by one into the binary search tree, the height should be 7.  And after 

clearing the tree and then manually inserting the following series of dates (1, 4, 

2006), (1, 1, 2006), (1, 7, 2006), (1, 2, 2006), (1, 5, 2006), (1, 6, 2006), (1, 3 

2006) one by one into the binary search tree, the height should be 4. 
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Part II. Adding a new option Z into the menu of services in the main function:  

running experiments measuring the average height of random binary search 

trees: 

 

First, declare an integer array heightArray of 1000 integers in the main function, i.e. 

“int heightArray[1000];”. We’ll use it to store the height information up to the 

1000 random binary search trees. Enhance the menu provided by the main function by 

implementing the following additional option Z for running experiments measuring 

the average height of random binary search trees:  

1. Ask the user the number of random dates to be inserted into each random 

binary search tree. Store it in an int variable n. Set up a loop to through 1000 

iterations. On iteration i ( i from 0 to 999), we’ll randomly generate a binary 

search tree of about n nodes by (i) first calling Clear ( ) first to empty the tree, 

say, myTree, (ii) set up an inner loop to  go through n iterations and on each 

iteration randomly set and insert a random date into the myTree, (iii) call 

myTree.Height( ) to calculate the height of the tree, and (iv) store the height 

information in the corresponding element of the heightArray[i].  

2. Calculate to report the average height of these 1000 trees according to the 

information now stored in heightArray[i] and store it in an integer variable 

averageHeight.  

3. Calculate and report the estimated standard deviation from averageHeight 

according to the information now stored in heightArray[i] in the following 

way: 

a. Calculate ∑ (heightArray[i] – averageHeight)
2
 over all i in the range 

of [0,1000-1]). In other words, calculate (heightArray[i] – 

averageHeight)
2
 for each i in the range of 0 to 999 and add them up to 

find the sum of them.  

b. Store the sum found above into a double variable sumOfSquaredErrors.  

c. Divide sumOfSquaredErrors by 1000 to find the average value, and 

then take the square root of the average as the standard deviation. To 

do so, let’s declare a double variable deviation to store the standard 

deviation and store the value sqrt(sumOfSquaredErrors/1000 ) into the 

variable deviation. Note that you need to call the sqrt function in 

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/2.7.html#sqrt
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<cmath> to calculate the square root, and thus you should have 

"#include <cmath>" in the beginning of your program.  

4. Calculate and report the percentage of the 1000 trees that have a height within 

the range of [averageHeight – 2*deviation, averageHeight + 2*deviation]. 

5. Calculate and report the percentage of the 1000 trees that have a height within 

the range of [averageHeight – 3*deviation, averageHeight + 3*deviation]. 

 

Part III. Run experiments and report the findings: 

 Run the option Z implemented in Part II above several times: Let n vary 

from 8192 (i.e. 2^13), 16384 (i.e. 2^14), 32768 (i.e. 2^15), 65536 (i.e. 2^16), 

131072 (i.e. 2^17), 262144 (i.e. 2^18), till 524288 (i.e. 2^19) as far as 

possible. Note that this makes log2 n vary accordingly from 14, 15, 16, 17, 18, 

till 19. Record in a WORD document the findings reported by your program.  

Note that if you implement Height( ) correctly as described in Part I above, it 

should be able to finish at least the first few experiments efficiently. If it is 

extremely slow to finish the experiments, it is not quite right and you need to 

re-examine the descriptions in Part I and your implementation of Height( ). 

 Reflection: Check and report whether the average height of the trees is always 

close to c * log2 n for some fixed constant c (even when you use different 

values for n). In other words, find out whether the average height divided by 

log2 n is close to some constant when n grows. If so, then your findings are 

consistent with the claim that on average the height of random BSTs of n 

nodes is O(log2 n).  In other words, is the average height bounded around or 

below some c * log2 n when n grows bigger and bigger. 

 

Submission of your work: 

 Record all your experimental findings and reflection in Part III into a WORD 

document. Submit the WORD document under Canvas. 

 Compress your entire Program folder into a zip file and upload it through Biola 

Canvas. 

 Carefully fill out this self-evaluation report and upload it through Biola Canvas. 

Note that you will receive no point for missing the self-evaluation report or 

missing the integrity review in the report. 

 

http://csci.biola.edu/csci106/selfEvaluation.doc
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