
Homework #2: Testing the performance of binary search trees.

Testing the performance of binary search trees for managing a large number of dates:

Step #1. Implement a Tree class for managing dates:

Your task in Step #1 is to revise the Tree class in the simple Tree C++ project regarding the

implementation of a simple binary search tree class that can store integers to implement a new Tree

class that can store date information. You should create a revised project and craft the source code

files in the project as described in the following:

 DateType.h:

Use the same DateType.h from your programming #2, which specifies the logical interface

of DateType class. Incorporate it into the project.

 DateType.cpp:
Use the same DateType.cpp from your programming #2 that implements the member

functions of the DateType class. Incorporate it into the project.

 Tree.h:

Revise things related to the declaration of Tree class as described in the following so

that it can manage dates instead of integers. (i) Modify the TreeNode structure such that

the Value field of a Tree node stores a DateType object, instead of an integer. (ii) Change

the type of the Val parameter in all the related member functions in the Tree class from int

into DateType too.

 Tree.cpp:

Revise things related to the implementation of Tree class as described in the following

so that it can manage dates instead of integers. (i) Change the type of the Val parameter

in the implementation of all the related member functions in the Tree class from int into

DateType. (ii) Similarly change the type of the related local variables in the implementation

of these member functions from int into DateType too.

 main.cpp:
Revise the main function in according to Step #2 below to implement options for testing the

performance of binary search trees.

Step 2. Implement the testing options:
In your main function in main.cpp, you should first declare a local tree object T, and then

implement a loop that repeated do the following in each iteration : (i) displays two options X and Y,

(ii) ask the user to pick one of the options, and (iii) do the following things according to the option

selected by the user:

 Option X (do random Insert for n times):

http://csci.biola.edu/csci106/sampleBinarySearchTree.zip

When the user selects this option, your program should (i) call the Clear method to empty

the binary search tree T, (ii) ask the user to enter a natural number n, (iii) declare a local

DateType object d, and (iv) set up a loop to go through n iterations and in each iteration call

d.SetRandomDate() to set a random date and then call the Insert(d) method to insert the

date in d into the binary search tree T.

 Option Y (do random Delete for n times):

When the user selects this option, your program should (i) ask the user to enter a natural

number m, (ii) declare a local DateType object d, and (iii) set up a loop to go through m

iterations and in each iteration first call d.SetRandomDate() to set a random date and then

call Delete (d) to try to remove the date in d from the binary search tree T.

 Step 3. Experiments:

A. Test and report the time needed for n insertions into a binary search tree: Try option X

several times and use different values of n from 1000, 10000, 100000, and up to at least

10,000,000 or higher. Each time use your watch to roughly estimate the amount of time

option X takes (to insert n random dates into a binary search tree). Record and report

your findings.

B. Right after Experiment A, test and report the time needed for m deletions in binary

search tree of about n nodes (where n is the value you used for Option X in the very

end of Experiment A): Try option Y several times now using different values of m from

1000, 10000, 100000, and up as you did in Experiment A above. Each time use your watch

to roughly estimate the amount of time option Y takes (to remove m random dates from the

binary search tree established by Option X in the very end of Experiment A). Record and

report your findings.

 Step 4. Reflection and analysis:

A. About the time needed for n insertions into an initially empty binary search tree: What

do you think is the relationship between the size n and the amount of time needed? Why?

Record your thoughts/analysis.

B. About the time needed for m deletions in a binary search tree of about n nodes: What

do you think is the relationship between the size n and the size m and the amount of time

needed? Why? Record and report your findings.

Submit your work
 Record all your experimental findings in Step 3 and your thoughts in Step 4 above in a

WORD document. Submit the WORD document under Canvas.

 Compress your entire Program folder into a zip file and upload it through Biola Canvas.

 Carefully fill out this self-evaluation report and upload it through Biola Canvas. Note that

you will receive no point for missing the self-evaluation report or missing the integrity

review in the report.

selfEvaluation.doc

