
Programming Assignment #4: Basics of Pointers

Purpose: Instead of using vectors, we want to have a parallel implementation of

the merge-sort algorithm by using pointers, recursion, and dynamic memory

allocation. It is intended to give you exposure to the use of pointers and

dynamic memory allocation.

Structure of your program: You only need a single cpp file for this assignment and the

structure should looks like the following:

#include <iostream>

#include <vector>

using namespace std;

bool mergeTwoSortedSeries

(double * ptrA, int sizeOfA, double * ptrB, int sizeOfB, double * ptrC)

{

//Your code

}

void mergeSort(double * ptrSeriesToSort, int sizeOfSeries)

{

//Your code

}

int main()

{

//Your code

}

Step 1: Implement the mergeTwoSortedSeries function.

Given a series of sizeOfA sorted values starting at the memory location pointed to by

ptrA and a series of sizeOfB sorted values starting at the memory location pointed to

by ptrB, implement the following function that can merge the values in these two

separate sorted series into a single sorted series of values starting at the memory

location pointed to by ptrC.

bool mergeTwoSortedSeries

(double * ptrA, int sizeOfA, double * ptrB, int sizeOfB, double * ptrC)

{

 …

}

Preconditions:

 Precondition #1: The caller of this function must make sure the chunk of

memory starting at the memory location pointed to by ptrC is big enough

to hold both the series starting at the memory location pointed to by ptrA

and the series starting at the memory location pointed to by ptrB

respectively. Otherwise, the program will be in trouble. (The

mergeTwoSortedSeries function cannot check this. It is the responsibility

of the caller of this function to make sure this is true when calling this

function.)

 Precondition #2: sizeOfA and sizeOfB must be non-negative. If any of them

is negative, stop and return false. (The mergeTwoSortedSeries function

should check this.)

 Precondition #3: These two given series of values starting at locations

pointed to by ptrA and ptrB respectively must be in ascending order

already. Your implementation should check to make sure they are already

in ascending order, and if they are not both in ascending order, stop and

return false. (The mergeTwoSortedSeries function should check this.)

Details of the implementation:

For the series pointed to by ptrA, keep an integer variable countA (with the

initial value 0 in the beginning) as the count of the number of values already

merged into the series pointed to by ptrC. Do the same thing with an integer

variable countB (with the initial value 0 in the beginning) for the series

pointed to by ptrB too. For the series pointed to by ptrC, keep an integer

variable countC (with the initial value 0 in the beginning) as the count of the

number of values already merged (from both the series pointed to by ptrA and

the series pointed to by ptrB) into the series pointed to by ptrC. Again,

initially all three counts are simply 0.

First, repeatedly do the following until either the series pointed to by ptrA or

the series pointed to by ptrB are completely merged into C:

 Compare the next value to merge in the series pointed to by ptrA with

the next value in to merge in the series pointed to by ptrB.

 Pick the smaller of the two values, copy it into the location pointed to

by ptrC.

 Update the counts in countA, countB, and countC accordingly.

Note that when the loop above is finished, the values store in one of the first

two series must have been completely merged into the third series. All we

need to do now is to should check and copy the remaining values left in either

one of the first two series into the end of the third series, and then return true.

Step 2: Test the implementation of the mergeTwoSortedSeries function.

Create a loop in your main function to repeatedly do the following test on the

mergeTwoSortedSeries function until the user enters a negative value for n1 or n2 in the

input:

 Ask the user to enter two non-negative integers n1 and n2. Dynamically allocate

three separate chunks of memory storages that can hold n1, n2, and (n1+n2)

double values respectively. Then use a loop to ask the user to enter a series of n1

sorted values and store them in the chunk that can hold n1 values. Similarly use a

loop to ask the user to enter a series of n2 sorted values and store them in the

chunk that can hold n2 values. Then call the mergeTwoSortedSeries function

appropriately to merge the two series of values into the one sorted series of values

stored in the chunk that can hold (n1+n2) values. Output the contents of this final

sorted series to verify the result. Then appropriately call delete[] to free these two

chucks of dynamically allocated memory

You have to make sure that mergeTwoSortedSeries is working perfectly (by doing

extensive testing in Step 2) before you proceed to Step 3 below.

Step 3: Implement the mergeSort function.

Implement the following recursive merge sort function by using the

mergeTwoSortedSeries function implemented in Step#1.

void mergeSort(double * ptrSeriesToSort, int sizeOfSeries)

Preconditions:

 sizeOfSeries must be non-negative. If it is negative, stop and return.

 There are sizeOfSeries values stored in the chunk of memory starting at the

memory location pointed to by ptrSeriesToSort.

Details of the implementation: Both approaches in the following are fine.

Approach 1. (Using the same approach in Programming #3)

 If sizeOfSeries is 1 or less, it is already sorted just return.

 If sizeOfSeries is 2, compare the two elements and swap them if necessary, and

then return.

 Otherwise, sizeOfSeries is at least 3, and we conceptually divide the series with

ptrSeriesToSort into two subseries: one is composed of the first sizeOfSeries/2

elements as a series, and the other one is composed of the next sizeOfSeries -

sizeOfSeries/2 elements as a series.

 Dynamically allocate a chuck of memory that can hold sizeOfSerie/2 values for

the first subseries above. Declare a local variable such as double * ptrSeries1 in

the function and then use a statement such as ptrSeries1 = new

double[sizeOfSeries/2] for allocating such a chunk of memory.

 Copy the first subseries, i.e. the first sizeOfSeries/2 elements in the series with

ptrSeriesToSort, into the chunk of memory pointed to by ptrSeries1.

 Dynamically allocate a chuck of memory that can hold sizeOfSerie - sizeOfSerie/2

values for the second subseries. Declare a local variable such as double *

ptrSeries2 in the function and then use a statement such as ptrSeries1 = new

double[sizeOfSerie - sizeOfSerie/2] for allocating such a chunk of memory.

 Copy the second subseries, i.e. the last sizeOfSerie - sizeOfSerie/2 elements in the

series with ptrSeriesToSort, into the chunk of memory pointed to by ptrSeries2.

 Call mergeSort(ptrSeries1, sizeOfSeries/2) to sort the first subseries.

 Call mergeSort(ptrSeries2, sizeOfSeries -sizeOfSeries/2) to sort the second

subseries.

 Call mergeTwoSortedSeries (ptrSeries1, sizeOfSeries/2, ptrSeries2, sizeOfSeries -

sizeOfSeries/2, ptrSeriesToSort) to merge the two sorted subseries into one

single sorted series stored in the chunk of memory pointed to by with

ptrSeriesToSort).

 Call delete [] ptrSeries1; and delete [] ptrSeries2; to free the dynamically

allocated memory.

Approach 2 (A variant for the implementation)

 If sizeOfSeries is 1 or less, it is already sorted just return.

 If sizeOfSeries is 2, compare the two elements and swap them if necessary, and

then return.

 Otherwise, sizeOfSeries is at least 3, and we conceptually divide the series with

ptrSeriesToSort into two subseries: one is composed of the first sizeOfSeries/2

elements as a series, and the other one is composed of the next sizeOfSeries -

sizeOfSeries/2 elements as a series.

 Call mergeSort(ptrSeriesToSort, sizeOfSeries/2) to sort the first subseries.

 Call mergeSort(ptrSeriseToSort+sizeOfSeries/2, sizeOfSeries -sizeOfSeries/2) to

sort the second subseries.

 Dynamically allocate a chuck of memory that can hold sizeOfSerie values for

merging the two subseries above. Declare a local variable such as double *

ptrMergeBuffer in the function and then use a statement such as ptrMergeBuffer

= new double[sizeOfSeries] for allocating such a chunk of memory.

 Call mergeTwoSortedSeries (ptrSeriesToSort, sizeOfSeries/2,

ptrSeriesToSort+sizeOfSeries/2, sizeOfSeries - sizeOfSeries/2, ptrMergeBuffer);

to merge the two sorted subseries into one single sorted series stored in the chunk

of memory pointed to by with ptrMergeBuffer.

 Copy the series of sizeOfSeries sorted values now in the chunk of memory

pointed to by ptrMergeBuffer back to the original chunk of memory pointed to by

ptrSeriesToSort.

 Call delete [] ptrMergeBuffer; to free the dynamically allocated memory.

Step 4: Test the implementation of the mergeSort function.

Create a loop in your main function to repeatedly do the following test on the mergeSort

function until the user enters a negative value for n in the input:

 Ask the user to enter one non-negative integer n. Dynamically allocate a chunk

of memory storage that can hold n double values. Use a loop to ask the user to

enter a series of n values and store them in the chunk of memory you just

allocated.

 Then call the mergeSort function appropriately to sort the series of numbers into

one sorted series.

 Then print out the contents of this final sorted series to verify the result.

 Then appropriately call delete[] to free the chuck of dynamically allocated

memory.

