
Programming Assignment #5A: Managing a vector of DateType objects

Overview:

Imagine that we want to manage a list of birthdays of your family and friends so that

we can conveniently sort birthdays, search for birthdays within a given range, store

the birthdays in a file, and read them from a file.

To accomplish the task, we’ll use a vector<DateType> object as a container

in the main memory to store and manage the birthday information and use various

operators for the DateType class implemented in programming #2 for input, output,

and comparisons of dates.

In addition, we’ll also adapt the implementation of mergeTwoSortedVectors

and mergeSort functions implemented in programming #3 for sorting the birthday

information as a vector<DateType> object.

Step 1. Revise the functions mergeTwoSortedVectors and mergeSort in

Programming #3 to provide the capability of sorting DateType objects instead of

double values:

 First, make a copy of your entire programming project for programming #3. Rename

the .cpp file that contains your main function as dateDB.cpp. For Visual C++, you

should then open up the project and add both of them into the project go to Project /Add

Existing Item to do so. For Visual C++, under the solution view you can directly rename

the file.

 Add a copy of DateType.h and a copy of DateType.cpp from programming #2 into the

source code subfolder in this project. For Visual C++, you can add both of them into the

project by going to “Project /Add Existing Item” to do so.

 Add the line #include "DateType.h " and the line #include <vector> in the beginning of

the .cpp file containing the main function . Modify the prototype

bool mergeTwoSortedVectors(vector<double> & vecA, vector<double> & vecB, vector<double> & vecC)

to bool mergeTwoSortedVectors

(vector<DateType> & vecA, vector< DateType > & vecB, vector< DateType > & vecC)

and modify the implementation so that it can merge two sorted vectors of DateType

objects.

 Modify the prototype of

bool mergeSort(vector<double> & vecToSort) to bool mergeSort(vector<DateType> & vecToSort)

and modify the implementation so that it can sort a vector of DateType objects.

 Testing: Modify the main function so that the user can enter dates (instead of double

values) to make sure the newly modified functions can work well for merging and

sorting dates respectively.

Here is an an example executable (zipped) of what you should have by the end of Step 1

for testing. Note that the testing code in the main function in Step 1 is not needed for in

the final version for submission. See Step 2 below about this.

Step 2. Completely rewrite the main function entirely to implement in

dateDB.cpp to provide service:

Overview: After Step 1, your main function in dateDB.cpp should be completely

rewritten now to provide services to read dates from the keyboard or files, save the

dates into files, search for dates within a given range of dates, and sort dates in order.

To accomplish these purposes, in the main function we’ll use a vector<DateType>

object as a container in the main memory to store and manage the date information by

using various operators and member functions of the DateType class. See more details

below.

Key data structures and variables:

 To dynamically store the information of dates, you should declare in your main

function ” vector<DateType> dateDB; ” to create a local vector for storing

DateType objects. You should also declare in your main function local DateType

objects “ DateType date, dBegin, dEnd; ” for storing temporary date information.

http://csci.biola.edu/csci106/DateSortExe.zip

 Add the line #include <string> in the beginning of the .cpp file for including the

string processing support. In the main function, you should declare a string

variable “ string filename; ” for storing the file name given by the user.

 Add the line #include <fstream> in the beginning of the .cpp file for file I/O

support. You should declare also two file handles “ ifstream fin; ” and “ ofstream

fout; ” for file input/output purposes respectively.

 You should also declare in your main function local integer variable “ int

numDateRecords; ” for temporarily storing the information of the number of date

records involved in the file I/O.

Service menu: The main function should set up a loop that would repeatedly display

a menu to prompt the user to choose one of the following services:

 K: to read a date manually Keyed in by the user and store it (i.e. push_back) in

the end of the vector dateDB,

 B: to clear the vector dateDB into an empty vector first and then read a Batch

of dates from a file specified by the users into the vector dateDB,

 D: to Display the dates currently stored in the vector dateDB to the screen,

 M: to Modify one of the dates by reading a new date from the keyboard to

overwrite the contents of an existing DateType object (specified by the user)

in the vector dateDB,

 W: to Write the dates currently stored in the vector dateDB into a file specified

by the user,

 F: to Find and display dates within a range specified by the user,

 S: to Sort the dates currently stored in the vector dateDB in order,

 Q: to Quit the program.

Implementation of the services: On each iteration of that loop, the program

should read the user’s choice and use a switch statement to do things according to the

choice:

 If the choice is ‘K’: the program should ask the local DateType object date to

read in a new date (i.e. ” cin >> date; ”) and then add the date into the end

of the vector dateDB (i.e. ” dateDB.push_back(date); ”).

 If the choice is ‘B’: the program should ask the user to provide the name of an

input file (e.g. dates.txt), and read the file name into the string variable

filename (i.e. ” cin >> filename; ”). The program should then open that file

through the input file object fin (i.e. ” fin.open(filename); ”) and read the

first integer from the file into numDateRecords (i.e. ” fin >>

numDateRecords; ”), and the program should check to make sure this number

is non-negative. If it is positive, the program should clear dateDB (i.e. ”

dateDB.clear(); ”) to an empty vector, and then set up a loop that iterates

for numDateRecords iterations to repeatedly read in a date from the file into

the local DateType object date (i.e. ” fin >> date; ”) and then add the date

into the end of the vector dateDB (i.e. ” dateDB.push_back(date); ”). After

the loop is finished, the program should close that file (i.e. ” fin.close(); ”).

 If the choice is ‘D’: the program should set up a loop to display each element

dateDB[i] in the vector dateDB (i.e. ” cout << dateDB[i] ; ”).

 If the choice is ‘M’: the program should ask the user the index i of the date in

dateDB[i] he/she wants to modify, read the index as an integer from the user,

check to make sure i is non-negative and less than dateDB.size(), and if so

read the new date into dateDB[i] (i.e. ” cin >> dateDB[i] ; ”).

 If the choice is ‘W’: the program should ask the user to provide the name of

an output file (e.g. dates.txt), and read the file name into the string variable

filename (i.e. ” cin >> filename; ”). The program should then open that file

through the output file object fout (i.e. ” fout.open(filename); ”) and first

write the size of dateDB into the file (i.e. ” fout << dateDB.size() <<

endl; ”). The program should then set up a loop that iterates for dateDB.size()

iterations to repeatedly write each element dateDB[i] into the file (i.e. ” fout

<< dateDB[i]) << endl; ”). After the loop is finished, the program should

close that file (i.e. ” fout.close(); ”).

 If the choice is ‘F’, the program should ask the user to provide the beginning

date and the ending date of the date range (i.e. ” cin >> dBegin; ” and ” cin

>> dEnd; ”), and then the program should set up a loop to check each

element dateDB[i] in the vector dateDB and display the contents of dateDB[i]

if dateDB[i] is within the range (i.e. if ” dBegin<= dateDB[i] && dateDB[i]

<= dEnd ” is true).

 If the choice is ‘S’, the program should call the revised mergeSort function to

sort the dates in order (i.e. ” mergeSort(dateDB); ”).

 If the choice is ‘Q’, the program will output a thank-you message, exit the

loop, and end the program.

Step 3. Tesing and Submission: When you are sure that all the services in the menu

provided by the main function are working, you are done. Fill out this Test3_self-

evaluation report and submit (i) the entire program folder containing your source code

files (.cpp and .h files) together with (ii) the self-evaluation report as a single zip file

under Canvas.

Test3Selfevaluation.doc
Test3Selfevaluation.doc

