
Programming Assignment #5B: Managing a linked list of DateType objects

Overview:

Just like in Programming Assignment #5A, we want to manage a list of birthdays of

your family and friends so that we can conveniently sort birthdays, search for birthdays

within a given range, store the birthdays in a file, and read them from a file. However,

this time we’ll use a linked list as a container in the main memory to store and manage

DateType objects and use various operators for the DateType class implemented in

programming #2 for input, output, and comparisons of dates. Note that we do not

offer the soring option in Programming Assignment#5B since we’ll maintain the

linked list as a sorted list.

Step 1. Modify the implementation of the linked list class for storing integers into a

linked list class for storing dates:

• Download: Download examine with this sample linked list C++ project regarding

the implementation of a simple linked list class that allows a linked list object to

stores integers in the ListNode structures and maintain these ListNode structures as

a linked list.

• Testing: Run the program and carefully examine the main function in main.cpp,

the declaration of the List class in LinkedList.h, and the implementation of the List

class in LinkedList.cpp to see how a List object can insert or delete an integer from

list, display the integers in the whole list, display the integers between two given

dates, read (or write) a batch of integers from (or into) a file (or from the keyboard

input) into the linked list.

• Add the support of DateType class:

1. Copy your own DateType.h and DateType.cpp that you have implemented

for programming #2 into the project folder and add them into your project.

2. Add #include "DateType.h" in the beginning of LinkedList.h to inform

the compiler of the declaration of the DateType class before the compiler

processes the declaration of the new List class you are going to implement.

• Revise the declaration of the List class: Modify the declaration of the ListNode

structure and the prototypes of the member functions of the List class in

LinkedList.h to have a new List class that allows a linked list object to store

DateType objects (instead of int value) in the value field of the ListNode structure

and maintain a collection of such ListNode structures as a linked list.

• Implement the new List class: Modify the implementation (i.e. the definition) of

the member functions of the List class in LinkedList.cpp to enable a List object of

your new List class to stores DateType objects in the new ListNode structures and

maintain these ListNode structures as a linked list. Note that many local variables

used in these member functions now need to be DateType objects instead of int

variables.

• Testing: Modify the main function in main.cpp accordingly to extensively test

whether a List object of the new List class you created above can correctly manage

a collection of DateType objects as a linked list. Use the code in the main function

http://csci.biola.edu/csci106/intergerLinkedList.zip

to call member functions of the new List class to make sure a List object can insert

or delete a date from list, display the dates, display the dates between two given

dates, read (or write) a batch of dates from (or into) a file (or from the keyboard

input) into the linked list.

Step 2. Rewrite the main function in main.cpp to provide the services:

Overview: As in Programming Assignment #5A, you should now totally rewrite the

main function in main.cpp to provide services to read dates from the keyboard or files,

save the dates into files, and search for dates within a given range of dates. You can

reuse much of the code framework you have in the main function for Programming

Assignment #5A to accomplish these purposes.

However, this time in the main function we’ll use an object of the new List class as a

container in the main memory to store and manage the date information by using

various operators and member functions of the DateType class. It is basically almost

the same as what you did in Programming Assignment #5A, except for the following

things:

• We’ll maintain the list as a sorted linked list by always calling the InserInOrder

method to insert a new DateType object into the linked list. Therefore we do not

offer the soring option in Programming Assignment#5B.

• You have to deal with each option by calling the member functions in the new List

class. See the details in the section of Implementation of the services below.

Key data structures:

• To dynamically store the information of dates, you should declare in your main

function ” List dateDB; ” to create a local linked list object for managing the

information of DateType objects. You should also declare in your main function

local DateType objects “ DateType date, dBegin, dEnd; ” for storing temporary

date information.

• Add the line #include <fstream> in the beginning of the .cpp file for file I/O support.

In the main function, you should declare a string object “ string filename; ” for

storing the file name given by the user. You should declare two file handles ifstream

fin;” and ofstream fout; for file input/output purposes respectively. You should also

declare in your main function local integer variable “ int numDateRecords; ” for

temporarily storing the information of the number of date records involved in the

file I/O.

Service menu: The main function should set up a loop that would repeatedly display

a menu to prompt the user to choose one of the following services:

• K: to read in one more date manually Keyed in by the user and insert it in the right

place in the linked list to maintain a sorted linked list of dates.

• B: to clear the list dateDB into an empty list first and then read a Batch of dates

from a file specified by the users into the list dateDB,

• D: to Display the dates currently stored in the list dateDB to the screen,

• M: to Modify one of the dates by reading a new date from the keyboard to overwrite

the contents of an existing DateType object (specified by the user) in the linked list

dateDB,

• W: to Write the dates currently stored in the list dateDB into a file specified by the

user,

• F: to Find and display dates within a range specified by the user,

• Q: to Quit the program.

Implementation of the services: On each iteration of that loop, the program should

read the user’s choice and use a switch statement to do things according to the choice:

• If the choice is ‘K’: the program should ask the local DateType object date to read

in a new date (i.e. ” cin >> date; ”) and then insert the date into the right place

within the linked list dateDB, i.e. just call dateDB.InserInOrder(date) to insert it in

the right place in the linked list.

• If the choice is ‘B’: the program should ask the user to provide the name of an input

file (e.g. dates.txt), and read the file name into the string object filename (i.e. ” cin

>> filename; ”). The program should then open that file through the input file

object fin (i.e. ” fin.open(filename); ”) and have dateDB read all the dates from

the file by the statement ” fin >> dateDB; ” . After that, the program should close

that file (i.e. ” fin.close(); ”).

• If the choice is ‘D’: the program should call dateDB.Display() to display each date

store in the linked list dateDB.

• If the choice is ‘M’: the program should ask the user to enter the date to modify and

the read the date (i.e. ” cin >> date; ”), call dateDB.Remove(date) to delete the

date first, and then ask the user to enter the new date to replace it and read the date

(i.e. ” cin >> date; ”), and finally call dateDB.InserInOrder(date) to insert it in

the right place in the linked list.

• If the choice is ‘W’: the program should ask the user to provide the name (less than

20 characters) of an input file (e.g. dates.txt), and read the file name into the string

object filename (i.e. ” cin >> filename; ”). The program should then open that

file through the output file object fout (i.e. ” fin.open(filename); ”) and have

dateDB write the number of dates and each individual date into the file by the

statement ” fout << dateDB; ” . After that, the program should close that file

(i.e. ” fout.close(); ”).

• If the choice is ‘F’: the program should ask the user to provide the beginning date

and the ending date of the date range (i.e. ” cin >> dBegin; ” and ” cin >>

dEnd; ”), and then the program should have dateDB display all the dates in theat

range by calling dateDB.FindAndDisplay(dBegin, dEnd). See the note below.

• Note that void FindAndDisplay(DateType dBegin, DateType dEnd) is a member

function in the List class: This member function sets up a loop to check each

element in the linked list and display the dates stored in the nodes of the linked list

which are within the range of the two date objects dBegin and dEnd.

• If the choice is ‘Q’, the program will output a thank-you message, exit the loop, and

end the program.

