
Integrity rules, grading policies, and more you should know about

programming assignments

1. Integrity rules for regular programming assignments

• Peer discussion: Peer discussion of code shown on a screen or board is

acceptable for explanation of ideas and for debugging purpose. Such

discussion may helpfully cultivate an open learning environment in the

class, but you should carefully read the guidelines below to avoid any

dishonest behavior and never step over the guidelines explicitly described

in the following.

• Never use any code (i.e. C++ statements, segments of a program or an

entire program) written by others (except for examples in our

textbooks or reading): Any copy-and-paste of code from other people’s

programs or from websites is viewed as cheating and you will get 0 points

for the assignment.

• Never circulate your code: You should never pass around your code

(electronically or on paper) to others except for the TA and the instructor.

Violating this rule is viewed as cheating in the class and the provider will

receive 0 points for the assignment.

• Never provide false or exaggerated results of test cases: You need to

report results of test cases in the self-evaluation report together with all your

source code files for each assignment. Providing false or exaggerated results

of test cases in the report is viewed as cheating and you will receive 0 points

for the assignment.

• Demonstrate the credibility of your authorship of the work: When you

submit your code as your own work for points, you should make sure that

you are able to explain your code and reconstruct your code from scratch

without any outside help when requested. If you are not able to do that on

your own when requested, you will get 0 points for the assignment and there

will be an investigation.

• Consequence of cheating in the class: Cheatings end in 0 points for the

assignments followed by discipline actions described in the student

handbook.

2. Official C++ compiler version: Visual C++ in Microsoft Visual Studio

Community Edition 2019 on Windows platforms. You need to make sure your

submitted programs are functional under such settings to get the points of

programming assignments. Note that a program that only works under a

compiler other than our official Visual C++ version will not get the points.

3. Self-evaluation report, test cases, and peer review: Note that for each

programming assignment you need to fill out this self-evaluation report. In the

report, you need to describe the test cases you used to verify the behavior of your

program and a peer reviewer for peer review.

4. Submission of your programming work: For each programming assignment, (i)

compress your entire Visual Studio project into a zip file and upload the zip file

under Canvas and (ii) fill out the self-evaluation report and upload it under canvas

5. Late policy

• No submission accepted after the submission site on Canvas is closed:

All submissions should be done through the Biola Canvas system. No

submission will be accepted after the submission site on Canvas is closed,

except for extremely exceptional situations such as a serious disabling

health problem with evidence from the doctors.

• Penalty for late submission after the due date but before the submission

site is closed: For a programming assignment, the submission site on

Canvas may remain open for 2 more days after the due date and 1 point will

be deducted from the work for a late submission before the submission is

closed.

6. Grading scale: We’ll grade each programming assignment in a 0-6 scale based on

the following guidelines (could have a fraction like 5.5 points out of 6), and a one-

point daily discount rate for being late.

selfEvaluation.doc
selfEvaluation.doc

0. Nothing done or missing the self-evaluation report or missing the integrity

review in the report

1. Source code is completed but the code fails to compile successfully

2. Source code can compile and do something required, but has serious bugs or

miss a couple of key features.

3. Source code can compile and do most of the features required, but has many

minor bugs or miss a key required feature.

4. Source code can compile and do all the features required, nearly fully

functional, only a couple of minor bugs.

5. Source code can compile and do all the features required, fully functional, no

bugs.

6. In addition to the points received according to the rubrics above, get one

more point if

 a. the self-evaluation report contains sufficient descriptions of test cases

used (0.25 point), and

 b. the self-evaluation report indicates the results of the test cases were

verified by a peer reviewer (0.25 point), and

 c. the source code is well indented and commented to make it visually

very readable (0.5 point).

