Homework #4: The Readers / Writers Problem
Due Thursday, Oct. 4
Problem statement:

· An object is shared among many threads, most only read the object but some write it.
· Requirement I: To get correct operation, we want only one writer at a time and zero readers when there is a writer active in writing things into the object.
· Requirement II: To get good performance, we want to allow multiple readers at a time.

· Requirement III: The writers have a higher privilege over the readers so that no new readers may enter to read things whenever a writer is waiting to enter and write things. This prevents a writer from starvation.

· Note that the roles of readers and writers are not symmetric. How do we control access to the object to permit this protocol while allowing maximum degree of concurrent access to the object?

Motivation
 Book database at the library

– Most accesses are searches (read-only)

– Less often there are checkouts, returns, new books, etc. (writes)

Making stock market data available on the web

– Thousands of clients view the data (read-only)

– A few times per hour the data is updated (writes)

– If writes are not atomic clients will sometimes get an inconsistent view of the data.
Anonymous CVS

– Many people view the sources (for gcc, for example)

– Only a few people contribute or modify new contents
Example:
You are running the CVS server for gcc, the GNU C Compiler.

• It is important for people to check out a consistent snapshot of the sources.
• gcc contains 18,000 files, 177MB — 22 minutes to sync up with the sources using a fast cable modem. At most 65 readers per day can access the contents if there is no concurrency between readers.
• Strict mutual exclusion only is too restrictive, and prevents performance goals from being met.

Questions: Examine the four solutions listed in the following pages carefully, assuming the semaphores in these solutions are all well initialized as needed as you want. In other words, all readers execute reader-entry at start and reader-exit on end of reading zone. (Similar for writers). Mutex semaphores are initialized to 1 and others (rsem, wsem) are initialized to 0. The variables rc, rwc, wc, and wwc are reader count, reader waiting count, writer count, writer waiting count respectively and are initialized to 0.
1. Which solutions correctly satisfy both requirement I and requirement II? For these solutions what should be the initial counter values of the semaphores used by them?

2. For those solution that do not meet both requirement I and requirement II, explain why they fail.
3. Assuming the semaphores in these solutions are all well initialized as needed as you want. Which solutions correctly satisfy all three requirements?

4. For those meet the first two requirements but not requirements III, explain why they fail.

A Reader-Writer Solution: A
Before Reader Entry

WAIT(mutex);

 rc++;

 if rc==1 then WAIT(wsem);

SIGNAL(mutex);

Before Reader Exit

WAIT(mutex);

 rc--;

 if rc==0 then SIGNAL(wsem);

SIGNAL(mutex);
Before Writer Entry
WAIT(wsem)
Before Writer Exit
SIGNAL(wsem)

Reader-Writer Solution: B
Before Reader Entry
WAIT(rsem);

SIGNAL(rsem)

WAIT(rmutex);

 rc++

 if rc==1 then WAIT(wsem);

SIGNAL(rmutex);

Before Reader Exit
WAIT(rmutex);

 rc--;

 if rc==0 then SIGNAL(wsem);

SIGNAL(rmutex);

Before Writer Entry
WAIT(wmutex);

 wc++;

 if wc==1 then WAIT(rsem);

SIGNAL(wmutex);

WAIT(wsem);

Before Writer Exit
SIGNAL(wsem);

WAIT(wmutex);

 wc--;

 if wc==0 then SIGNAL(rsem);

SIGNAL(wmutex);

Reader Writer Solution - C
Before Reader Entry
WAIT(mutex);

 if (wwc>0) or (wc>0) then begin

 rwc++;

 SIGNAL(mutex);

 WAIT(rsem);

 WAIT(mutex);

 rwc--; end;

 rc++;

SIGNAL(mutex);

Before Reader Exit
WAIT(mutex);

 rc--;

 if (rc==0) and (wwc>0) then SIGNAL(wsem);

SIGNAL(mutex);
Before Writer Entry
WAIT(mutex);

if (rc>0)or(wc>0)or(rwc>0)or(wwc >0)

 then begin

 wwc++;

 SIGNAL(mutex);

 WAIT(wsem);

 WAIT(mutex);

 wwc--; end;

 wc++;

 SIGNAL(mutex);
Before Writer Exit
 WAIT(mutex);

 wc-- ;

 if (rwc>0) then

 for i:==1 to rwc do SIGNAL(rsem)

 else if (wwc>0) then SIGNAL(wsem);

 SIGNAL(mutex)

Reader Writer Solution - D
Before Reader Entry
WAIT(mutex);

 if (wwc>0) or (wc>0) then begin

 rwc++;

 SIGNAL(mutex);

 WAIT(rsem);

 rwc--;

 end;

 rc++;

 if rwc>0 then SIGNAL(rsem)

 else SIGNAL(mutex);

Before Reader Exit
WAIT(mutex);

 rc--;

 if (rc==0) and (wwc>0) then SIGNAL(wsem);

 else SIGNAL(mutex);
Before Writer Entry
WAIT(mutex);

if (rc>0)or(wc>0)

 then begin

 wwc++;

 SIGNAL(mutex);

 WAIT(wsem);

 wwc--;

 end;

 wc++;

 SIGNAL(mutex);
Before Writer Exit
 WAIT(mutex);

 wc-- ;

 if (rwc>0) then SIGNAL(rsem)

 else

 if (wwc>0) then SIGNAL(wsem);

 else SIGNAL(mutex)

