
Nachos Assignment #2: Multiprogramming

Tom Anderson
Computer Science 162

Due date: Tuesday, October 12, 5:00 p.m.

The second phase of Nachos is to support multiprogramming. As in the first
assignment, we give you some of the code you need; your job is to complete the
system and enhance it.

The first step is to read and understand the part of the system we have
written for you. Our code can run a single user-level ‘C’ program at a time. As
a test case, we’ve provided you with a trivial user program, ‘halt’; all halt does
is to turn around and ask the operating system to shut the machine down. Run
the program ‘nachos -x ../test/halt’. As before, trace what happens as the user
program gets loaded, runs, and invokes a system call.

The files for this assignment are:

progtest.cc — test routines for running user programs.

addrspace.h, addrspace.cc – create an address space in which to run a user
program, and load the program from disk.

syscall.h – the system call interface: kernel procedures that user programs can
invoke.

exception.cc – the handler for system calls and other user-level exceptions,
such as page faults. In the code we supply, only the ‘halt’ system call is
supported.

bitmap.h, bitmap.cc – routines for manipulating bitmaps (this might be useful
for keeping track of physical page frames)

filesys.h, openfile.h (found in the filesys directory) – a stub defining the Nachos
file system routines. For this assignment, we have implemented the Nachos
file system by directly making the corresponding calls to the UNIX file
system; this is so that you need to debug only one thing at a time. In
assignment four, we’ll implement the Nachos file system for real on a
simulated disk.

translate.h, translate.cc – translation table routines. In the code we supply, we
assume that every virtual address is the same as its physical address – this
restricts us to running one user program at a time. You will generalize
this to allow multiple user programs to be run concurrently. We will not
ask you to implement virtual memory support until in assignment 3; for
now, every page must be in physical memory.

1



machine.h, machine.cc – emulates the part of the machine that executes user
programs: main memory, processor registers, etc.

mipssim.cc – emulates the integer instruction set of a MIPS R2/3000 processor.

console.h, console.cc – emulates a terminal device using UNIX files. A terminal
is (i) byte oriented, (ii) incoming bytes can be read and written at the same
time, and (iii) bytes arrive asynchronously (as a result of user keystrokes),
without being explicitly requested.

So far, all the code you have written for Nachos has been part of the operating
system kernel. In a real operating system, the kernel not only uses its procedures
internally, but allows user-level programs to access some of its routines them
via “system calls”.

In this assignment we are giving you a simulated CPU that models a real
CPU. In fact, the simulated CPU is the same as the real CPU (a MIPS chip),
but we cannot just run user programs as regular UNIX processes, because we
want complete control over how many instructions are executed at a time, how
the address spaces work, and how interrupts and exceptions (including system
calls) are handled.

Our simulator can run normal programs compiled from C – see the Makefile
in the ‘test’ subdirectory for an example. The compiled programs must be linked
with some special flags, then converted into Nachos format, using the program
“coff2noff” (which we supply). The only caveat is that floating point operations
are not supported.

The assignment is items 1, 2 and 4 listed below.

1. Implement system call and exception handling. You must support all of the
system calls defined in syscall.h, except for thread fork and yield, which
can be implemented for extra credit. We have provided you an assembly-
language routine, “syscall”, to provide a way of invoking a system call
from a C routine (UNIX has something similar – try ‘man syscall’). You’ll
need to do part 2 of this assignment in order to test out the ‘exec’ and
‘wait’ system calls; the routine ‘StartProcess’ in progtest.cc may be of use
to you in implementing the ‘exec’ system call.

Note that you will need to “bullet-proof” the Nachos kernel from user
program errors – there should be nothing a user program can do to crash
the operating system (with the exception of explicitly asking the system
to halt). Also, to support the system calls that access the console de-
vice, you will probably find it helpful to implement a “SynchConsole”
class, that provides the abstraction of synchronous access to the con-
sole. “progtest.cc” has the beginnings of a SynchConsole implementation;
look ahead to the file system assignment for the similar example for the
SynchDisk class.

2



2. Implement multiprogramming with time-slicing. The code we have given
you is restricted to running one user program at a time. You will need
to: (a) come up with a way of allocating physical memory frames so that
multiple programs can be loaded into memory at once (cf. bitmap.h), (b)
provide a way of copying data to/from the kernel from/to the user’s virtual
address space (now that the addresses the user program sees are not the
same as the ones the kernel sees), and (c) use timer interrupts to force
threads to yield after a certain number of ticks. Note that scheduler.cc
now saves and restores user machine state on context switches.

Instrument the operating system to keep track of average response time
for executing user programs. Write a test case (a set of user programs to
run) that performs well using your policy for scheduling the CPU among
user programs, and a test case that performs poorly (has very long average
response time). Run the test cases and explain the measured performance.
What would you need to do in order to fix this?

3. The ‘exec’ system call does not provide any way for the user program to
pass parameters or arguments to the newly created address space. UNIX
does allow this, for instance, to pass in command line arguments to the
new address space. Implement this feature!

4. Write a shell and some utility programs. A shell reads a command from the
user via the console, then runs the command by invoking the kernel system
call ‘exec’. The UNIX program ‘csh’ is an example of a shell. Test out
your shell and system call handling by writing a couple utility programs,
such as UNIX ‘cat’ and/or ‘cp’.

5 (10% extra credit) Implement multithreaded user programs. Implement the
thread fork and yield system calls, to allow a user program to fork a thread
to call a routine in the same address space, and then ping pong between
the threads.

3


