Programming 1C: A branch-and-bound approach to prune the search space

1 The mixture sequence problem

A sequence of n natural numbers $C=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle$ is said to be a mixture of a sequence of n natural numbers $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and another sequence of n natural numbers $B=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ if and only if for every $1 \leq i \leq n$ we have $c_{i}=a_{i}$ or $c_{i}=b_{i}$. In other words, for i from 1 to n, we pick either a_{i} or b_{i} and make it c_{i}. We say $\sum_{1 \leq i \leq n} c_{i}$ is a mixture sum of A and B.

The mixture sequence problem is defined as follows:

- Given two sequences of n natural numbers of $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $B=$ $\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$,
- and given a natural number m,
- determine whether there exists a mixture C of A and B such that the the mixture sum of C equals m, and
- if such a mixture sequence does exist print out the mixture sequence; otherwise print out a message saying there is no such mixture sequence.

2 A Branch-and-Bound Approach

The following is a possible branch-an-bound approach to solve the problem:

- We refer to an empty sequence $C^{\prime}=\langle \rangle$ of no elements as a partial mixture sequence of length 0 . For $1 \leq l<n$, let's refer to a sequence $C^{\prime}=$ $\left\langle c_{1}, c_{2}, \ldots, c_{l}\right\rangle$ as a partial mixture sequence (of A and B) of length l if and only if $c_{i}=a_{i}$ or $c_{i}=b_{i}$ for $1 \leq i \leq l$. We use the notation PartialSum $\left(C^{\prime}\right)$ to refer to the sum of all the elements in the partial mixture sequence C^{\prime}.
- For $0 \leq l \leq n$, let's define $L_{i}=\sum_{l+1 \leq k \leq n} \min \left(a_{k}, b_{k}\right)$ and $U_{l}=\sum_{l+1 \leq k \leq n} \max \left(a_{k}, b_{k}\right)$. In other words, L_{l} is the minimum (lower bound) of the sum of the $l+1$ th element to the nth (the last) element in any mixture sequence C derived from A and B while U_{l} is the maximum (upper bound) of the sum of the $l+1$ th element to the nth (the last) element in any mixture sequence C derived from A and B.
- Observation 1: We can search for a mixture sequence C with a target mixture sum m by starting from an empty partial mixture sequence C^{\prime} of length $l=0$ and then iteratively trying to extend the current partial mixture sequence $C^{\prime}=\left\langle\ldots, c_{l}\right\rangle$ of length l one step further by appending either a_{l+1} or b_{l+1} to the end of the current partial mixture sequence C^{\prime}. Naively, for a partial mixture sequence C^{\prime} of length l there are two possible branches
to explore for further extensions into a final mixture sequence C with the target mixture sum m. However, Observation 2 below shows that at time we can completely cut off any search along these two branches completely by checking the bounds L_{l} and U_{l} against PartialSum $\left(C^{\prime}\right)$ and the target sum m.
- Observation 2: Note that whatever way we extend a partial mixture sequence $C^{\prime}=\left\langle\ldots, c_{l}\right\rangle$ into a mixture sequence $C=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle$, the resulting mixture sum must be at least PartialSum $\left(C^{\prime}\right)+L_{l}$ and at most PartialSum $\left(C^{\prime}\right)+U_{l}$. If the target sum m does not fall into the range of $\left[\right.$ PartialSum $\left(C^{\prime}\right)+L_{l}$, PartialSum $\left.\left(C^{\prime}\right)+U_{l}\right]$, we know that it is impossible to extend the current partial mixture sequence C^{\prime} into a mixture sequence ending in the target mixture sum of m. In this case, we can completely cut off any further search effort to extend the current partial mixture sequence C^{\prime}.

3. Implementation and experiments to do:

Implement the branch-and-bound scheme above for solving the mixture sequence problem. Note: You may consider using this recursive exhaustive branching search implementation as the basis and then incorporate the branch-and-bound scheme into it.

Experiment \#A: Run your new program over at least the test cases 1A~1D in Programming \#1B. Please report whether your new program can get the same results correctly as your program for Programming \#1B did.

Experiment \#B: Consider the following two sequences:
$\mathrm{A}=<18,29,31,42,55,66,71,85,91,103,114,128,135,140,155,81,93,17,24,65,39$, $27,58,19,130,141,182,153,104,115,18,29,31,42,55,66,71,85,91,103,114,128$, $135,140,155>$ and
$B=<81,93,17,24,65,39,27,58,19,130,141,182,153,104,115,18,29,31,42,55,66$, $71,85,91,103,114,128,135,140,155,81,93,17,24,65,39,27,58,19,130,141,182$, $153,104,115>$.

Use your new program to search for a mixture sequence with the sum of (i) 655 , (ii) 3869 , (iii) 3901 , (iv) 4139 , (v) 99991 respectively.

Report your findings on cases that the program can finish within 1 day. For each case, please report whether your new program can find a mixture sequence (and include the sequence if it does find one). How much time on average does it take to finish one case?

Experiment \#C: Try to use your old program for Programming \#1B to repeat what you are required to do in the Experiment B above. Report your findings on cases that the program can finish within 1 day.

