
Matching by similarity: A social media company tries to match customers with very similar

preferences over n activities or subjects (e.g. hiking, diving, shopping, restaurant x, restaurant

y,…).

 The company knows the preference list of each customer, i.e. the rankings of these n

activities according to the preference of the customer.

 For each customer, the company wants to recommend another person in the customer

pool who is most similar to the customer in terms of their tastes over these n activities.

Similarity metric: One possible similarity metric is to count the number of inversions between

the preference lists of two customers as the similarity distance between them. See the definition

of inversions between two preference lists below.

Definition: Given

 the preference list of person a: a1, a2, …, an (a permutation of 1 to n)

 the preference list of person b: b1, b2, …, bn (a permutation of 1 to n)

there is an inversion between the activity pair of i and j if and only if

 ai < aj, but bi > bj or

 ai > aj, but bi < b.

In short, an inversion between the activity pair of i and j means these two persons have a

conflict of preference over activities i and j.

The number of inversions between the two preference lists is simply the total number of

inversions found over all the n(n-1)/2 pairs of activities.

Example:

You can find six inversions in total between the two preference lists for the five activities below.
For example, two of the six inversions (between B-D and between C-D respectively) are shown
below.

You

Me

2 5 3 1 4

2 3 1 5 4

A B C D E

activities

Total 6 inversions,

including inversions

between B-D, and

between C-D

Think about the following questions:

(i) Design an algorithm to figure out the number of inversions given any two preference

lists of n activities.

(ii) Assume that you have a catalogue of n=400 activities and a pool of m=10000

customers. Each customer has his/her own preference list. How much time does it

take for your computer to find out for each customer a person that is most similar to

him/her? Could it be done in a minute, for example?

(iii) Try to find an O(n log n) algorithm for this problem.

