Test 2: Divide and Conquer

For \#1, \#2(i), \#3(i), \#4, and \#5 below, you need to describe (i) the divide-and-conquer algorithm you propose for solving the problem, (ii) the resulting recurrence relation in the form of $T(n)=a^{*} T(n / b)+n^{c}$ regarding the time complexity $T(n)$ and (iii) the time complexity $T(n)$ in closed form according to the master method in the handout and the actual coefficients a, b and c, in the recurrence relation in (ii).

1. Given an array A of n elements $A[1], A[2], \ldots, A[n]$ and you are also told the values of these n elements have the following V shape property: there is a unique (untold) index k in the range of $[1, \mathrm{n}]$ such that $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{i}+1]$ for every index i in the range of $[1, \mathrm{k}-1]$ and $\mathrm{A}[\mathrm{i}]<\mathrm{A}[\mathrm{i}+1]$ for every index i in the range of $[\mathrm{k}, \mathrm{n}-1]$. Obviously $\mathrm{A}[\mathrm{k}]$ is the minimum among all the values in the entire array. Devise a good divide-and-conquer algorithm to find this minimal value. The time complexity of the algorithm should be better than $\boldsymbol{\theta}(\boldsymbol{n}) .10$ points.
2.

(i) Given an array A of n elements $A[1], A[2], \ldots, A[n]$ storing arbitrarily large integers, the maximum value gap in this array is the maximum of $\underline{A[i]-A[i]}$ over all possible index pairs i and j where $i>j$. Devise a good divide-and-conquer algorithm to find the maximum value gap. Your algorithm should be more efficient than an $\boldsymbol{\theta}\left(\mathbf{n}^{2}\right)$ brute force search to find the maximum value gap. 10 points.
(ii) Implement your algorithm as a running program that can ask the user to enter the n values and then determine the maximum value gap. 5 points.
3.
(i) Given an array A of n elements $A[1], A[2], \ldots, A[n]$ storing arbitrarily large integers, we say a pair of values of $A[i]$ and $\mathrm{A}[\mathrm{j}]$ is a significant inversion if and only if $i<j$ and $A[i]>2 * A[j]$. Devise a good divide-and-conquer to find the total number of significant inversion pairs in A. Your algorithm should be more efficient than an $\boldsymbol{\theta}\left(\mathbf{n}^{2}\right)$ brute force search that examine all the $\boldsymbol{\theta}\left(n^{2}\right)$ pairs to find the number of significant inversions. 10 points.
(ii) Implement your algorithm as a running program that can ask the user to enter the n values and then determine the number of significant inversion pairs. 5 points.
4. Consider a two dimensional array A of n elements $A[i][j]$ where i and j are indices in the range of $\left[1, n^{1 / 2}\right]$. All the elements $A[i][j]$ are distinct integers. Two elements $A[i][j]$ and $A[k][l]$ are neighbors if and only if $|i-k|+|j-l|$ equals 1 . An element $A[i][j]$ is a local minimum if and only if the integer stored in $A[i][j]$ is smaller than all of its neighbors. Devise a good divide-and-conquer to find a local minimum. Your algorithm should be more efficient than an $\boldsymbol{\theta}(\boldsymbol{n})$ brute force search that examine all the \boldsymbol{n} elements and their neighbors. 10 points.
5. Problem for bonus points. Given an array A of n elements $A[1], A[2], \ldots, A[n]$ storing arbitrarily large integers, we say an integer k is the majority value in this array if and only if more than $\mathrm{n} / 2$ of the elements in A store this particular value k . Note that there may or may not be a majority value. Assuming that checking whether two integers are equal takes only constant time and n is a power of 2 . Devise a good divide-andconquer algorithm that uses no more than $2 n$ comparisons to determine whether the majority value does exist in the array and if it does exist find out this majority value. Bonus 10 points.

