Reasoning about Probabilities of Transitions and Observations
Part I: Basics of Using HMMs for Spelling Recognition

Hidden Markov Models (HMMs): In Rabiner’s tutorial paper on HMMs, Rabiner describes a HMM of n hidden states \{S_1, S_2, \ldots, S_n\} and m possible observations \{v_1, v_2, \ldots, v_m\} in terms of (π, A, B) where (i) π is an n-by-1 vector encoding the initial-state probabilities, (ii) A is an n-by-n matrix encoding the state transition probabilities, and (iii) B is an n-by-m matrix encoding the observation probabilities. More specifically,
- $\pi = <\pi_1, \pi_2, \ldots, \pi_n>$ and each π_i in π represents the probability of having S_i as the initial state.
- A is an n-by-n matrix and each element a_{ij} in A represents the transition probability from S_i to S_j (i.e. the probability of ending in S_j as the next state when the current state is S_i).
- B is an n-by-m matrix and each element b_{ij} in B represents the probability of observing v_j in state S_i (i.e. the probability of observing in v_j when the current state is S_i).

Spelling recognition and the spelling model: The diagram below depicts the transition probabilities of a spelling model regarding how a particular person P may type a 3-character word abc as depicted in our class handout on HMMs for spelling recognition. The information provided by the diagram correspond to the information encoded in vector π and matrix A in Rabiner’s tutorial paper on HMMs where Rabiner describes a HMM in terms of (π, A, B).

![Diagram](image-url)

Figure 1: The spelling model regarding the word abc with the parameters $de_{fp} = 2$, $p_{repeat} = 0.2$, and $p_{moveOn} = 0.8$.
Question #1: There are 5 hidden states \(\{ S_1=I, S_2=a, S_3=b, S_4=c, S_5=F \} \). In other words, \(n=5 \) is the number of hidden states in this case. What is the contents of the corresponding vector \(\pi \) (as a 1 x 5 row vector)? What is the contents of the corresponding matrix \(A \) (as a 5 x 5 row matrix)?

Spelling recognition and the keyboard model:
In the following, let’s use a simplified 1-dimensional keyboard of only 4 keys a, b, c, d as depicted in the simplified example in our class handout on HMMs for spelling recognition. The information provided by such keyboard model corresponds to the information encoded in matrix \(B \) in Rabiner’s tutorial paper on HMMs where Rabiner describes a HMM in terms of \((\pi, A, B)\).

A simplified example: Consider the situation that \(p_{\text{miss}} = 0.1, p_{\text{hit}} = 0.9 \text{, and } d_{\text{freq}} = 2 \). If the one-dimensional keyboard only has 4 keys a, b, c, d (instead of the full 26 keys), the probabilities of typographic mistakes when trying to type a are

- \(Pr(\text{Char} = b|\text{State} = a) = 0.04 \),
- \(Pr(\text{Char} = c|\text{State} = a) = 0.02 \), and
- \(Pr(\text{Char} = d|\text{State} = a) = 0.04 \).

Question #2: We may observe any of the four possible characters each time the person tries to type one character given the 4-keys 1-dimensional keyboard. In the end of the However, for convenience, let’s add (i) one special observation \(\text{ReadyToType} \) dedicated solely to the special state \(S_1=I \) and (ii) one special observation \(\text{EndOfWord} \) dedicated solely to the special state \(S_5=F \). This is because we know the person is ready to start the typing process for the word when we are in the special starting state \(I \). Similarly we know it is the end of the typing process for the word when we are in the special final state \(F \). In other words, (i) the special state \(S_1=I \) is associated with the special observation \(\text{ReadyToType} \) with probability equal to 1 and (ii) the special state \(S_5=F \) is associated with the special observation \(\text{EndOfWord} \) with probability equal to 1. So we have 6 possible observations \(\{ v_1=\text{ReadyToType}, v_2=a, v_3=b, v_4=c, v_5=d, v_6=\text{EndOfWord} \} \). In other words, \(m=6 \) is the number of different observations we may encounter. What is the contents of the corresponding matrix \(B \) (as a 5 x 6 matrix)?
Reasoning about Probabilities of Transitions and Observations:
There are many possibilities regarding the process of state transitions and the resulting characters observed when the person tries to type the word \textit{abc} according to the spelling model and the keyboard model described above. For example, the person’s mind may go through the following state sequence \(Q: I \rightarrow a \rightarrow b \rightarrow b \rightarrow F \) and produces observation sequence \(O: \text{ReadyToType} \rightarrow b \rightarrow b \rightarrow d \rightarrow \text{EndOfWord} \), which corresponds to the resulting character string \textit{bbd} observed. How likely could this happen? Equations 12 to 15 on page 262 in Rabiner’s tutorial paper show how we can calculate the joint probability of going through a given state sequence \(Q \) and seeing a sequence of observations \(O \).

Question #3:
What is the probability of going through a given state sequence \(Q: I \rightarrow a \rightarrow b \rightarrow b \rightarrow F \) and seeing a sequence of observations \(O: \text{ReadyToType} \rightarrow b \rightarrow b \rightarrow d \rightarrow \text{EndOfWord} \)?

Reasoning about Probabilities of Observations:
As discussed above, there are many possibilities regarding the process of state transitions and the resulting characters observed when the person tries to type the word \textit{abc} according to the spelling model and the keyboard model described above. How likely could the person end in the character string \textit{bbd} (i.e. observation sequence \(O: \text{ReadyToType} \rightarrow b \rightarrow b \rightarrow d \rightarrow \text{EndOfWord} \))?

Note that any feasible state sequence \(Q: I \rightarrow ? \rightarrow ? \rightarrow ? \rightarrow F \) of length 5 may lead to the observation sequence. Equations 16 and 17 on page 262 in Rabiner’s tutorial paper tell us that we may (i) enumerate every possible state sequence \(Q \) and for each \(Q \) calculate the joint probability of going through the state sequence \(Q \) and seeing a sequence of observations \(O \) and (ii) sum up all joint probabilities in (i) as the result.

Question #4:
Enumerate and show all the possible state sequence \(Q: I \rightarrow ? \rightarrow ? \rightarrow ? \rightarrow F \).

Question #5:
What is the probability of seeing the character string \textit{bbd} (i.e. observation sequence \(O: \text{ReadyToType} \rightarrow b \rightarrow b \rightarrow d \rightarrow \text{EndOfWord} \)) when the person tries to type the word \textit{abc}?

Note: A more efficient algorithm for finding the answer to Question 5 is the forward algorithm described in pages 262–263 in Rabiner’s tutorial paper.