Reasoning about Probabilities of Transitions and Observations Part I: Basics of Using HMMs for Spelling Recognition

Hidden Markov Models (HMMs): In Rabiner's tutorial paper on HMMs, Rabiner desribes a HMM of *n* hidden states $\{S_1, S_2, ..., S_n\}$ and *m* possible observations $\{v_1, v_2, ..., v_m\}$ in terms of (π, A, B) where (i) π is an *n*-by-1 vector encoding the initial-state probabilities, (ii) A is an *n*-by-*n* matrix encoding the state transition probabilities, and (iii) B is an *n*-by-*m* matrix encoding the observation probabilities. More sepcficially,

- π = < π₁, π₂, ..., π_n > and each π_i in π represents the probability of having S_i as the initial state.
- A is an *n*-by-*n* matrix and each element a_{ij} in A represents the transition probability from S_i to S_j (i.e. the probability of ending in S_j as the next state when the current state is S_i).
- B is an *n*-by-*m* matrix and each element b_{ij} in B represents the probability of observing v_j in state S_i (i.e. the probability of observing in v_j when the current state is S_i).

Spelling recognition and the spelling model: The diagrapm below depcits the transition probabilities of a spelling model regarding how a particular person *P* may type a 3-character word *abc* as depiced in our class handout on HMMs for spelling recognition. The information provided by the diagram correspond to the information encoded in vector π and matrix A in Rabiner's tutorial paper on HMMs where Rabiner describes a HMM in terms of (π , A, B).

Figure 1: The spelling model regarding the word 'abc' with the parameters $deg_{sp} = 2$, $p_{repeat} = 0.2$, and $p_{moveOn} = 0.8$

Question #1: There are 5 hidden states { $S_1=I$, $S_2=a$, $S_3=b$, $S_4=c$, $S_5=F$ }. In other words, n=5 is the number of hidden states in this case. What is the contents of the corresponding vector π (as a 1 x 5 row vector)? What is the contents of the corresponding matrix A (as a 5 x 5 row matrix)?

Spelling recognition and the keyboard model:

In the following, let's use a simplied 1-dimensioal keyboard of only 4 keys a, b, c, d as depiced in the simplified example in our class handout on HMMs for spelling recognition. The information provided by tsuch keyboard mdeol corresponds to the information encoded in matrix B in Rabiner's tutorial paper on HMMs where Rabiner describes a HMM in terms of (π , A, B).

A simplified example: Consider the situation that $p_{miss} = 0.1$, $p_{hit} = 0.9$, and $deg_{kb} = 2$. If the one-dimensional keyboard only has 4 keys a, b, c, d (instead of the full 26 keys), the probabilities of typographic mistakes when trying to type a are

- Pr(Char = b|State = a) = 0.04,
- Pr(Char = c | State = a) = 0.02, and
- Pr(Char = d | State = a) = 0.04.

Question #2: We may observe any of the four possible characters each time the person tries to type one character given the 4-keys 1-dimensional keyboard. In the end of the However, for convenience, let's add (i) one sepcial observation *ReadyToType* dedicated solely to the special state $S_1=I$ and (ii) one sepcial observation *EndOfWord* dedicated solely to the special state $S_5=F$. This is because we know the perosn is ready to start the typing process for the word when we are in the special starting state *I*. Similarly we know it is the end of the typing process for the word when we are in the special state *F*. In other words, (i) the special state $S_1=I$ is associated with the special observation *ReadyToType* with probability equal to 1 and (ii) the special state $S_1=F$ is associated with the special observations { $v_1=ReadyToType$, $v_2=a$, $v_3=b$, $v_4=c$, $v_5=d$, $v_6=EndOfWord$ }. In other words, *m*=6 is the number of different observations we may encounter. What is the contents of the corresponding matrix B (as a 5 x 6 matrix)?

Reasoning about Probabilities of Transitions and Observations:

There are many possibilities regarding the process of state transitions and the resulting characters observed when the person tries to type the word *abc* according to the spelling model and the keyboard model described above. For example, the person's mind may go through the following state sequence $Q: I \rightarrow a \rightarrow b \rightarrow b \rightarrow F$ and produces observation sequence $O: ReadyToType \rightarrow b \rightarrow b \rightarrow d \rightarrow EndOfWord$, which corresponds to the resulting character string *bbd* observed. How likely could this happen? Equations 12 to 15 on page 262 in Rabiner's tutorial paper show how we can cacluate the joint probability of going through a given state sequence Q and seeing a sequence of observations O.

Question #3:

What is the probability of going through a given state sequence $Q: I \rightarrow a \rightarrow b \rightarrow b \rightarrow F$ and seeing a sequence of observations *O: ReadyToType* $\rightarrow b \rightarrow b \rightarrow d \rightarrow EndOfWord$?

Reasoning about Probabilities of Observations:

As discussed above, there are many possibilities regarding the process of state transitions and the resulting characters observed when the person tries to type the word *abc* according to the spelling model and the keyboard model described above. How likely could the person end in the character string *bbd* (i.e. observation sequence *O*: *ReadyToType* $\rightarrow b \rightarrow b \rightarrow d \rightarrow EndOfWord$)?

Note that any feasible state sequence $Q: I \rightarrow ? \rightarrow ? \rightarrow ? \rightarrow F$ of length 5 may lead to the observation sequence. Equations 16 and 17 on page 262 in Rabiner's tutorial paper tell us that we may (i) enumerate every possible state sequence Q and for each Q cacluate the joint probability of going through the state sequence Q and seeing a sequence of observations O and (ii) sum up all joint probabilities in (i) as the result.

Question #4:

Enumerate and show all the possible state sequence $Q: I \rightarrow ? \rightarrow ? \rightarrow ? \rightarrow ? \rightarrow F$.

Question #5:

What is the probability of seeing the character string *bbd* (i.e. observation sequence *O*: *ReadyToType* $\rightarrow b \rightarrow d \rightarrow EndOfWord$) when the person tries to type the word *abc*?

Note: A more efficient algorithm for finding the answer to Question 5 is the forward algorithm described in pages 262~263 in Rabiner's tutorial paper.