Reasoning about Probabilities of Transitions and Observations

Part I: Basics of Using HMMs for Spelling Recognition

Hidden Markov Models (HMMs): In Rabiner's tutorial paper on HMMs, Rabiner desribes a HMM of n hidden states $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ and m possible observations $\left\{v_{l}\right.$, $\left.v_{2}, \ldots, v_{m}\right\}$ in terms of ($\pi, \mathrm{A}, \mathrm{B}$) where (i) π is an n-by- 1 vector encoding the initial-state probabilities, (ii) A is an n-by- n matrix encoding the state transition probabilities, and (iii) B is an n-by- m matrix encoding the observation probabilities. More sepcficially,

- $\pi=<\pi_{l}, \pi_{2}, \ldots, \pi_{n}>$ and each π_{i} in π represents the probability of having S_{i} as the initial state.
- A is an n-by- n matrix and each element $\mathrm{a}_{i j}$ in A represents the transition probability from S_{i} to S_{j} (i.e. the probability of ending in S_{j} as the next state when the current state is S_{i}).
- B is an n-by- m matrix and each element $\mathrm{b}_{i j}$ in B represents the probability of observing v_{j} in state S_{i} (i.e. the probability of observing in v_{j} when the current state is S_{i}).

Spelling recognition and the spelling model: The diagrapm below depcits the transition probabilities of a spelling model regarding how a particular person P may type a 3-character word $a b c$ as depiced in our class handout on HMMs for spelling recognition. The information provided by the diagram correspond to the information encoded in vector π and matrix A in Rabiner's tutorial paper on HMMs where Rabiner describes a HMM in terms of ($\pi, \mathrm{A}, \mathrm{B}$).

Figure 1: The spelling model regarding the word ' $a b c$ ' with the parameters $\operatorname{deg}_{s p}=2, p_{\text {repeat }}=0.2$, and $p_{\text {moveOn }}=$ 0.8

Question \#1: There are 5 hidden states $\left\{S_{1}=I, S_{2}=a, S_{3}=b, S_{4}=c, S_{5}=F\right\}$. In other words, $n=5$ is the number of hidden states in this case. What is the contents of the corresponding vector π (as a 1×5 row vector)? What is the contents of the corresponding matrix A (as a 5×5 row matrix)?

Spelling recognition and the keyboard model:

In the following, let's use a simplied 1-dimensioal keyboard of only 4 keys a, b, c, d as depiced in the simplified example in our class handout on HMMs for spelling recognition. The information provided by tsuch keyboard mdeol corresponds to the information encoded in matrix B in Rabiner's tutorial paper on HMMs where Rabiner describes a HMM in terms of ($\pi, \mathrm{A}, \mathrm{B}$).

A simplified example: Consider the situation that $p_{\text {miss }}=$ $0.1, p_{h i t}=0.9$, and $d^{2} g_{k b}=2$. If the one-dimensional keyboard only has 4 keys a, b, c, d (instead of the full 26 keys), the probabilities of typographic mistakes when trying to type a are

- $\operatorname{Pr}($ Char $=b \mid$ State $=a)=0.04$,
- $\operatorname{Pr}($ Char $=c \mid$ State $=a)=0.02$, and
- $\operatorname{Pr}($ Char $=d \mid$ State $=a)=0.04$.

Question \#2: We may observe any of the four possible characters each time the person tries to type one character given the 4-keys 1-dimensional keyboard. In the end of the However, for convenience, let's add (i) one sepcial obervarion ReadyToType dedicated solely to the special state $S_{I}=I$ and (ii) one sepcial obervarion EndOfWord dedicated solely to the special state $S_{5}=F$. This is because we know the perosn is ready to start the typing process for the word when we are in the special starting state I. Similarly we know it is the end of the typing process for the word when we are in the special final state F. In other words, (i) the special state $S_{I}=I$ is asscoaited with the special observation ReadyToType with probability equal to 1 and (ii) the special state $S_{l}=F$ is asscoaited with the special observation EndOfWord with probability equal to 1. So we have 6 possible observations $\left\{v_{1}=\right.$ ReadyToType, $v_{2}=a, v_{3}=b, v_{4}=\mathrm{c}, v_{5}=\mathrm{d}$, $\left.v_{6}=E n d O f W o r d\right\}$. In other words, $m=6$ is the number of different obervations we may encounter. What is the contents of the corresponding matrix B (as a 5×6 matrix)?

Reasoning about Probabilities of Transitions and Observations:

There are many possibilities regarding the process of state transitions and the resulting characters observed when the person tries to type the word $a b c$ according to the spelling model and the keyboard model described above. For example, the person's mind may go through the following state sequence $Q: I \rightarrow a \rightarrow b \rightarrow b \rightarrow F$ and produces observation sequence O : ReadyToType $\boldsymbol{\rightarrow} b \boldsymbol{\rightarrow} \rightarrow d \rightarrow$ EndOfWord, which corresponds to the resulting character string $b b d$ observed. How likely could this happen? Equations 12 to 15 on page 262 in Rabiner's tutorial paper show how we can cacluate the joint probability of going through a given state sequence Q and seeing a sequence of observations O.

Question \#3:

What is the probability of
going through a given state sequence $Q: I \rightarrow a \rightarrow b \rightarrow b \rightarrow F$ and seeing a sequence of observations O : ReadyToType $\rightarrow b \rightarrow b \rightarrow d \rightarrow$ EndOfWord ?

Reasoning about Probabilities of Observations:

As discussed above, there are many possibilities regarding the process of state transitions and the resulting characters observed when the person tries to type the word $a b c$ according to the spelling model and the keyboard model described above. How likely could the person end in the character string $b b d$ (i.e. observation sequence O : ReadyToType $\rightarrow b \rightarrow b \rightarrow d \rightarrow$ EndOfWord $)$?
Note that any feasible state sequence $Q: I \boldsymbol{\rightarrow}$? $\boldsymbol{\rightarrow}$? $\boldsymbol{\rightarrow}$? $\boldsymbol{\rightarrow} F$ of length 5 may lead to the observation sequence. Equations 16 and 17 on page 262 in Rabiner's tutorial paper tell us that we may (i) enumerate every possible state sequence Q and for each Q cacluate the joint probability of going through the state sequence Q and seeing a sequence of observations O and (ii) sum up all joint probabilities in (i) as the result.

Question \#4:

Enumerate and show all the possible state sequence $Q: I \boldsymbol{\rightarrow} ? \boldsymbol{\rightarrow}$? $\boldsymbol{\rightarrow}$? $\boldsymbol{\rightarrow} F$.

Question \#5:

What is the probability of seeing the character string $b b d$ (i.e. observation sequence O : ReadyToType $\rightarrow b \rightarrow b \rightarrow d \rightarrow$ EndOfWord) when the person tries to type the word $a b c$?

Note: A more efficient algorithm for finding the answer to Question 5 is the forward algorithm described in pages 262~263 in Rabiner's tutorial paper.

