Homework #2C: Reasoning about HMMs

Part A

For Part A, answer the questions below in Part A based on the same HMM $\lambda = (\pi, A, B)$ that encodes (i) the exact same spelling model regarding a specfic person P trying to type the word *abc* in Homework 2A and shown in the Figure 1 below and (ii) the exact same 4-key one-dimensional keyboard depicted in Homework 2A and also shown in the example below.

The spelling model for the word *abc*:

Figure 1: The spelling model regarding the word 'abc' with the parameters $deg_{sp} = 2$, $p_{repeat} = 0.2$, and $p_{moveOn} = 0.8$

One dimensional 4-key keyboard model:

A simplified example: Consider the situation that $p_{miss} = 0.1$, $p_{hit} = 0.9$, and $deg_{kb} = 2$. If the one-dimensional keyboard only has 4 keys a, b, c, d (instead of the full 26 keys), the probabilities of typographic mistakes when trying to type a are

- Pr(Char = b|State = a) = 0.04,
- Pr(Char = c | State = a) = 0.02, and
- Pr(Char = d|State = a) = 0.04.

Question #A1: 1 point

What is the probability $Pr(Q \mid \lambda)$ of going through a given state sequence $Q: I \rightarrow b \rightarrow b \rightarrow F$

Question #A2: 1 point

?

What is the probability $Pr(O | Q, \lambda)$ of seeing a sequence of observations *O*: *ReadyToType* $\rightarrow d \rightarrow b \rightarrow EndOfWord$ given that the underlying state sequence *Q* is $I \rightarrow b \rightarrow b \rightarrow F$?

Question #A3: 1 point What is the probability Pr(O, Q | λ) of going through a given state sequence Q: $I \rightarrow b \rightarrow b \rightarrow F$ and seeing a sequence of observations O: ReadyToType $\rightarrow d \rightarrow b \rightarrow EndOfWord$?

Question #A4: 1 point

Enumerate and show all the possible state sequence $Q: I \rightarrow ? \rightarrow ? \rightarrow F$.

Question #A5: 3 points

Use the approach is equation 16 in Rabiner's paper to determine the probability Pr(O | λ) of seeing the character string *db* (i.e. observation sequence *O*: *ReadyToType* $\rightarrow d \rightarrow b \rightarrow EndOfWord$) when the person tries to type the word *abc*.

Note: Instead of putting down a final answer only, record the intermediate results of your work so that you still can get some partial credit if you make mistakes in the process of calculating the answer.

Question #A6: 3 points

Use the forward algorithm to determine the probability Pr(O | λ) of seeing the character string *db* (i.e. observation sequence *O: ReadyToType* $\rightarrow d \rightarrow b \rightarrow EndOfWord$) when the person tries to type the word *abc*.

Note: You need to show the entire table of your work instead of just giving an answer.

Part B

For Part B, answer the questions below based on the new HMM $\lambda' = (\pi', A', B')$ that encodes (i) the spelling model regarding the same person *P* trying to type the word *ab* and (ii) the exact same 4-key one-dimensional keyboard depicted in Part A.

The spelling model for the word *ab*:

For Part B, please consider a **2-character word** *ab* instead of the 3 character word *abc* used in Part A, assuming all the parameter values remain the same, i.e. $deg_{sp}=2$, $p_{repeat}=0.2$, $p_{moveOn}=0.8$ since it is about the typing behavior of the same person.

Question #B1: 4 points

Draw the transition diagrapm depicting the spelling model regarding how the same person P may type a 2 character word ab (similar to the way it is depiced in Figure 1 in Part A), assuming all the parameter values remain the same, i.e. $deg_{sp}=2$, $p_{repeat}=0.2, p_{moveOn}=0.8$.

Note: You may use **paint** or other software to draw the diagram and upload it as a separate image file of bmp or jpg or png format.

Question #B2: 3 points

The information provided by the transition diagram corresponds to the information encoded in vector π and matrix A in Rabiner's tutorial paper on HMMs where Rabiner describes a HMM in terms of $\lambda' = (\pi', A', B')$. There are 4 hidden states { $S_1=I$, $S_2=a$, $S_3=b$, $S_4=F$ }. In other words, n=4 is the number of hidden states in this case. What is the contents of the corresponding vector π' (as a 1 x 4 row vector)? What is the contents of the corresponding matrix A' (as a 4 x 4 row matrix)?

One dimensional 4-key keyboard model:

The person still uses the same one dimensional keyboard depicted in Part A.

A simplified example: Consider the situation that $p_{miss} = 0.1$, $p_{hit} = 0.9$, and $deg_{kb} = 2$. If the one-dimensional keyboard only has 4 keys a, b, c, d (instead of the full 26 keys), the probabilities of typographic mistakes when trying to type a are

- Pr(Char = b|State = a) = 0.04,
- Pr(Char = c | State = a) = 0.02, and
- Pr(Char = d | State = a) = 0.04.

Question #B3: 3 points

The information provided by the keyboard mdeol corresponds to the information encoded in matrix B' in Rabiner's tutorial paper on HMMs where Rabiner describes a

HMM in terms of $\lambda' = (\pi', A', B')$. What is the contents of the corresponding matrix B' (as a 4 x 6 matrix)?

Note: We may observe any of the four possible characters each time the person tries to type one character given the 4-keys 1-dimensional keyboard. For convenience as in Homework 2A, let's add (i) one sepcial obervarion *ReadyToType* dedicated solely to the special state $S_1=I$ and (ii) one sepcial obervarion *EndOfWord* dedicated solely to the special state $S_5=F$. In other words, (i) the special state $S_1=I$ is associated with the special observation *ReadyToType* with probability equal to 1 and (ii) the special state $S_1=F$ is associated with the special observation *EndOfWord* with probability equal to 1. So we have 6 possible observations { $v_1=ReadyToType$, $v_2=a$, $v_3=b$, $v_4=c$, $v_5=d$, $v_6=EndOfWord$ }. In other words, m=6 is the number of different observation symbols we may encounter. That is why B' is a 4 x 6 matrix.

Part C

For Part C, answer the questions below. They are the same as those in Part A, but are now **based on the new HMM** $\lambda' = (\pi', A', B')$ depicted in Part B above that encodes (i) the spelling model regarding a person trying to type the word *ab* and (ii) the 4-key one-dimensional keyboard depicted in Part B.

9

Question #C1: 1 point What is the probability $Pr(Q | \lambda')$ of going through a given state sequence $Q: I \rightarrow b \rightarrow b \rightarrow F$

Question #C2: 1 point What is the probability Pr($O | Q, \lambda'$) of seeing a sequence of observations *O*: ReadyToType $\rightarrow d \rightarrow b \rightarrow EndOfWord$ given that the underlying state sequence *Q* is $I \rightarrow b \rightarrow b \rightarrow F$?

Question #C3: 1 point What is the probability Pr(O, Q | λ ') of going through a given state sequence $Q: I \rightarrow b \rightarrow b \rightarrow F$ and seeing a sequence of observations *O: ReadyToType* $\rightarrow d \rightarrow b \rightarrow EndOfWord$?

Question #C4: 1 point Enumerate and show all the possible state sequence $Q: I \rightarrow ? \rightarrow ? \rightarrow F$.

Question #C5: 3 points

Use the approach is equation 16 in Rabiner's paper to determine the probability Pr(O | λ ') of seeing the character string *db* (i.e. observation sequence *O*: *ReadyToType* $\rightarrow d \rightarrow b \rightarrow EndOfWord$) when the person tries to type the word *ab*.

Note: Instead of putting down a final answer only, record the intermediate results of your work so that you still can get some partial credit if you make mistakes in the process of calculating the answer.

Question #C6: 3 points

Use the forward algorithm to determine the probability Pr(O | λ ') of seeing the character string *db* (i.e. observation sequence *O*: *ReadyToType* $\rightarrow d \rightarrow b \rightarrow EndOfWord$) when the person tries to type the word *abc*.

Note: You need to show the entire table of your work instead of just giving an answer.

Part D

Question #D1: 2 points

When we observe the string db on the screen as the result of typing either the word *abc* or the word *ab* (by the same person P modeled in Part A through Part C), are you going to reccognize it as the word *abc* or the word *ab* for spelling recognition purpose? Explain why based on your answers to A5 and A6, C5 and C6.