

Knowledge Representation and Automatic Reasoning

CSCI 480

SEMESTER (Spring 2017)

PROFESSOR/CLASS INFORMATION

Shieu-Hong Lin

(Course) Title: Topics in Computer Science
Theory of Computation
Term: Spring, 2017
Location: Busn 210
Office Phone: 562 903-4741
Office Hours: M-Th 8:30-10:30am,
E-Mail: shieu-hong.lin@biola.edu

Class Website: http://csci.biola.edu/csci440TC
Course Code/#: CSCI 440TC
Class Days/Time: T Th 1:30-2:45pm
Credit Hours/Units: 3
Office Location: Grove 8
Meetings with Professor: Make Appt via Email
Admin Assistant: Jerrianne Smith, x4741

COURSE ALIGNMENT WITH PROGRAM LEARNING OUTCOMES

CSCI 480 Research Seminar: Knowledge Representation and Automatic Reasoning. This upper-division
course is an elective course for computer science juniors and seniors. Successful completion of this
course (see next section) will prepare students to demonstrate a developing proficiency toward the
accomplishment of PLO: analysis, modeling and problem solving.

COURSE OBJECTIVES AND STUDENT LEARNING OUTCOMES

By the completion of this course including class participation, class assignments (referred to as "Tasks"),
class readings and group interaction, the following objectives and learning outcomes will be assessed
and demonstrated:

IDEA Objective #4: Developing specific skills, competencies, and points of view needed by professionals
in the field most closely related to this course (Essential emphasis).

STUDENT LEARNING OUTCOMES The learner will demonstrate that he or she has satisfactorily fulfilled
IDEA Objective #4 by being able to:

 write programs using Eclipse, a powerful programming language for constraint logic

programming, and develop an in-depth understanding of the syntax and semantics of logic

programming and the roles of constraint processing and search in problem solving,

 analyze constraint satisfaction problems, model the problem-solving schemes as Eclipse

logic programs, and solve the problems by the search capability provided by Eclipse,

http://en.wikipedia.org/wiki/ECLiPSe
http://en.wikipedia.org/wiki/Constraint_logic_programming
http://en.wikipedia.org/wiki/Constraint_logic_programming

 understand logic and its important applications in automatic deduction, formal verification,

and problem solving, and

 gain a solid understanding of computational complexity such as the concepts of complexity

classes P, NP, NP-hard, and NP-complete and the implications of whether P=NP in

computation.

 REQUIRED TEXTS

 Krzysztof R. Apt and Mark, Constraint Logic Programming using Eclipse, Cambridge University
Press, 2007.

 J. Kleinberg and E. Tardos. Algorithm Design, Addison Wesley, 2005.

LEARNING TASKS (Assignments) & ASSESSMENT (Grading)

Description and Weighting of Assignments:

Task 1: Weekly Reading and Progress Report
Due Date: Wednesday of the week (15 assignments)
Weighting: 15%
Possible Points: 3 points each.
Description: Using the template for cumulative weekly progress report, the student needs to
incorporate information such as the amount of time he/she spent for the reading, attendance,
and the overall progress in reading, programming, and other assignments since last Wednesday
into the cumulative progress report.
Assessment: The student need to (i) finish the reading on time and record it in the progress
report (1 point), (ii) attend the class this week (1 point), and (iii) gain a good understanding of
80% or more of the contents or have spent at least three hours in the reading (1 point).

Task 2: Weekly Programming Assignments (10 assignments)
Due Date: Wednesday of the week
Weighting: 45%
Possible Points: 6 points each.
Description: There will be 9 weekly programming assignments, which form the backbone of the
course. They require the student to incrementally develop programming skills based on the
concepts of data structures and object-oriented programming learned in the class.

 Peer discussion is most encouraged, but any copy-and-paste code from other people’s
programs is absolutely prohibited and will lead to serious discipline actions.

 Peer discussion based on the code shown on the screen and paper could be very helpful
for debugging purpose and explanation of ideas. But you should never pass around your
code as electronic files to others except for the TA and the instructor.

 You should make sure that you are able to reconstruct your code from scratch without
any outside help when you submit a programming assignment as your own work.

http://en.wikipedia.org/wiki/P_%28complexity%29
http://en.wikipedia.org/wiki/NP_%28complexity%29
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P_versus_NP_problem
http://www.amazon.com/Constraint-Logic-Programming-using-Eclipse/dp/0521866286/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1218655118&sr=8-1

Assessment: The student needs to email the source code files (all related .cpp and .h

files) together with a self-evaluation report to the TA. We’ll grade each programming

assignment in a 0-6 scale based on the following rubric.

1. Nothing done or missing the self-evaluation report or missing the integrity review in
the report.

2. Source code is completed but the code fails to compile successfully.
3. Source code can compile and do something required, but has serious bugs or miss a

couple of key features.
4. Source code can compile and do most of the features required, but has many minor

bugs or miss a key required feature.
5. Source code can compile and do all the features required, nearly fully functional, only a

couple of minor bugs.
6. Source code can compile and do all the features required, fully functional, no bugs.
7. In addition to the points received above, get one more point if

a. the self-evaluation report contains sufficient descriptions of test cases used (0.25 point), and
b. the self-evaluation report indicates the results of the test cases were verified by a peer
reviewer (0.25 point), and
c. the source code is well indented and commented to make it visually very readable (0.5
point).

Task 3: Exams (Quizzes and exams)
Weighting: 40%
Possible Points: Up to 50 points each.
Description: The exams have both the written component, which mainly tests the conceptual
understanding of computation and logic, and the programming component, which tests skills in
logic programming.
Assessment: The written component will be graded based on the answers provided while the
programming component will be graded based on the same rubric provided for the weekly
programming assignments.

CLASS INFORMATION

1. Class Attendance and Attendance Policy:

Attendance You are expected to attend the class regularly since we will examine details of logic
programs using the computers in the lab. Missing the class may seriously hamper your
understanding of many key concepts and programming skills critically needed in your
programming assignments.

Policy Class attendance is counted toward points for the weekly progress report.

2. Late policy

 No submission accepted after the submission site on Canvas is closed: All submissions
should be done through the Biola Canvas system. No submission will be accepted after

the submission site on Canvas is closed, except for extremely exceptional situations such
as a serious disabling health problem with evidence from the doctors.

 Penalty for late submission after the due date but before the submission site is closed:
For a programming assignment,
the submission site on Canvas may remain open for 2 more days after the due date and
1 point will be deducted from the work for a late submission before the submission is
closed.
For a reading report,
the submission site on Canvas may remain open for 6 more days after the due date and
1 point will be deducted from the report for a late submission before the submission is
closed.

3. Turning in Assignments:

Assignments are expected to be received electronically submitted under Canvas.

4. Computation of Final Grade:

Weekly Progress Report 15 %

Weekly Programming Assignments 45%

Exams 40 %

Total 100%

5. Final grades will be awarded on the following point system:
A 93%
A- 90%
B+ 87%
B 84%
B- 80%
C+ 77%
C 74%
C- 70%
D+ 67%
D 64%
D- 60% to pass class

GENERAL INFORMATION

Tentative Schedule

 Week 1 Logic programming and pure Prolog

 Week 2 A reconstruction of pure Prolog

 Week 3 Arithmetic in Prolog

 Week 4 Control and meta-programming

 Week 5 Manipulating structures

 Week 6 Constraint programming: a primer

 Week 7 Iteration in ECLiPSe

 Week 8 Top-down search with passive constraints

 Week 9 The suspend library

 Week 10 Constraint propagation in ECLiPSe

 Week 11 Top-down search with active constraints

 Week 12 Optimization with active constraints

 Week 13 Constraints on reals

 Week 14 Linear constraints over continuous and integer variables

 Week 15 Applications

 Final

