

The vehicle starts at the location of the fuel station S_1 and travels along a fixed path that passes through the fuel stations S_1 , S_2 , ..., S_{N-1} , S_N in order. The fuel station S_N is the very last fuel station before reaching the final destination.

Parameters

- Tank capacity of the vehicle (in gallons).
- The initial amount of fuel in the tank of the vehicle (in gallons).
- N: the number of the stations (stations $S_1, S_2, ..., S_N$) on a given fixed path.
- For each j in 1 to N, we have the following additional information associated with station S_{j}
 - c_j : the fuel cost per gallon at the *j* th station S_j .
 - g_j : the amount of fuel consumed (in gallons) to go from station S_j to the next station (or to the final destination from the very last station S_{N_j} .

Decision to make at station S_j

- Y_j : the amount of fuel to fill in at station S_j .
- If Y_j is 0, it means the vehicle simply passes by without refueling at station S_j .
- Note that (i) you can never refuel the tank to go beyond the tank capacity and (ii) when you leave station S_j, you should have enough fuel to reach the next station (or to reach the destination when leaving S_N).
- A feasible refueling policy < Y₁, Y₂, ...,Y_N> ensures that the amount of fuel in the tank should never go below 0 and should never go beyond the tank capacity throughout the entire trip.
- An optimal refueling policy < Y_1 , Y_2 , …, $Y_N\!\!>$ is a feasible refueling policy that minimizes the total fuel cost.

Relevant and useful variables you may also consider in the context of station S_j

- X_j : the amount of fuel in the tank when the vehicle just arrives at station S_j without doing any refueling operation there.
- Z_j : the amount of fuel in the tank when the vehicle is going to leave station S_j (possibly after a refueling operation there).
- Note that (i) X_1 is determined by the initial amount of fuel in the tank of the vehicle, (ii) Z_j is determined by X_j and Y_j , and (iii) X_{j+1} is determined by Z_j and g_j .

Operational objective:

Determine Y_j (the amount of fuel to fill in at station S_j) for each j in 1 to N to minimize the total the fuel cost subject to the constraints that the amount of fuel in the tank should never go below 0 and should never go beyond the tank capacity. In other words, **determine an optimal refueling policy** $< Y_1, Y_2, ..., Y_N >$ for the trip.

Let the tank capacity be 10. Let the initial fuel amount be 0. Let N be 3. In other words, three stations.

Let the coefficients c_i and g_i be

for j=1,	2	5
for j=2,	4	9
for j=3,	3	7;